

Please write clearly in block capital		
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature		

A-level BIOLOGY

Paper 1

Monday 12 June 2017

Afternoon

Time allowed: 2 hours

For this paper you must have:

- a ruler with millimetre measurements
- a calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All work must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

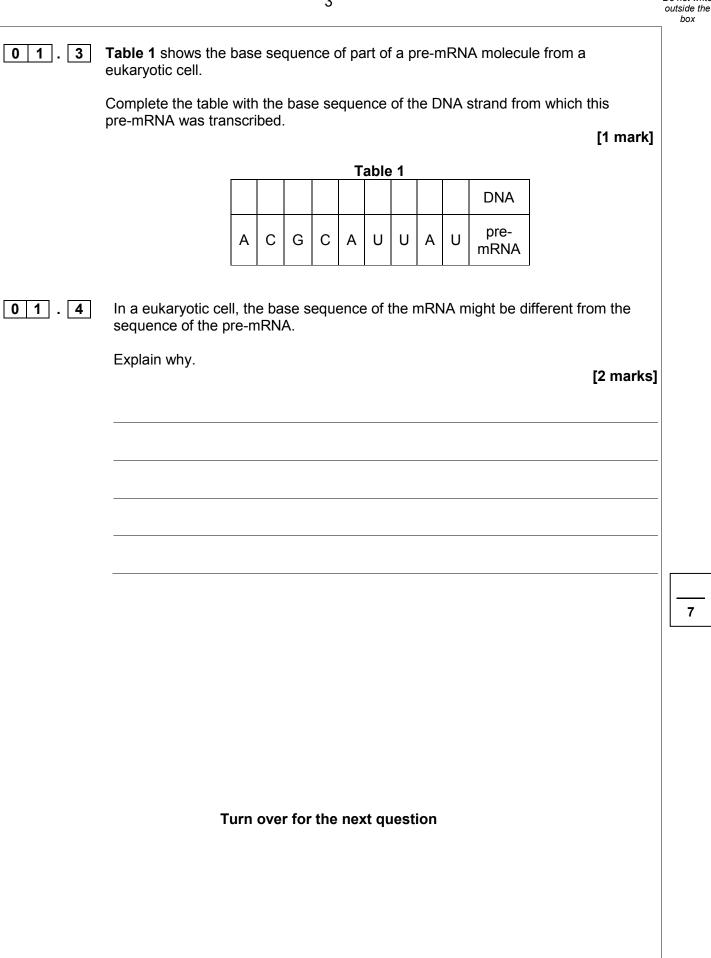
Information

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 91.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	i de la companya de l
6	i de la companya de l
7	
8	
9	
10	
TOTAL	

www.xtrapa

vw.xtrapapers.com	
	Do not write outside the box


	Answer all questions in the spaces provided.
01.1	Give the two types of molecule from which a ribosome is made. [1 mark]
	Describe the role of a ribosome in the production of a polypeptide. Do not include transcription in your answer. [3 marks]

Do not write

box

7

Л	
٦	

Do not write outside the
box

02	In mammals, in the early stages of pregnancy, a developing embryo exchanges substances with its mother via cells in the lining of the uterus. At this stage, there is a high concentration of glycogen in cells lining the uterus.
02.1	Describe the structure of glycogen. [2 marks]
02.2	During early pregnancy, the glycogen in the cells lining the uterus is an important energy source for the embryo.
	Suggest how glycogen acts as a source of energy. Do not include transport across membranes in your answer. [2 marks]

Do not write outside the box

		•	
٠	-		
-			

02.3	Suggest and explain two ways the cell-surface membranes of the cells lining the uterus may be adapted to allow rapid transport of nutrients.
	[2 marks]
	2
02.4	In humans, after the gametes join at fertilisation, every cell of the developing
	 embryo undergoes mitotic divisions before the embryo attaches to the uterus lining. The first cell division takes 24 hours. The subsequent divisions each take 8 hours.
	After 3 days, the embryo has a total volume of 4.2×10^{-3} mm ³ .
	What is the mean volume of each cell after 3 days? Express your answer in standard form.
	Show your working. [2 marks]
	Answer = mm ³
	Turn over ►

8

Do not write outside the

box

0 3 . 1

Sodium ions from salt (sodium chloride) are absorbed by cells lining the gut. Some of these cells have membranes with a carrier protein called NHE3.

NHE3 actively transports one sodium ion into the cell in exchange for one proton (hydrogen ion) out of the cell.

Use your knowledge of transport across cell membranes to suggest how NHE3 does this.

[3 marks]

03.2

Scientists investigated the use of a drug called Tenapanor to reduce salt absorption in the gut. Tenapanor inhibits the carrier protein, NHE3.

The scientists fed a diet containing a high concentration of salt to two groups of rats, \bf{A} and \bf{B} .

- The rats in Group **A** were **not** given Tenapanor (0 mg kg⁻¹).
- The rats in Group **B** were given 3 mg kg⁻¹ Tenapanor.

One hour after treatment, the scientists removed the gut contents of the rats and immediately weighed them.

Their results are shown in Table 2.

Table 2

Concentration of Tenapanor / mg kg ⁻¹	Mean mass of contents of the gut / g
0	2.0
3	4.1

The scientists carried out a statistical test to see whether the difference in the means was significant. They calculated a P value of less than 0.05.

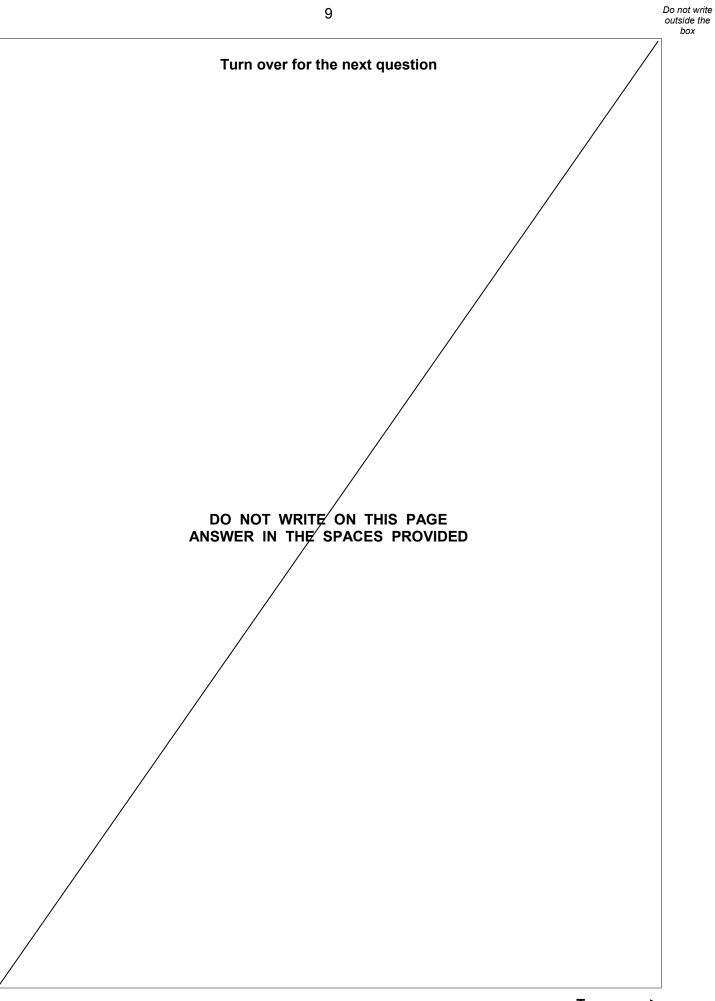
They concluded that Tenapanor did reduce salt absorption in the gut.

Use all the information provided and your knowledge of water potential to explain how they reached this conclusion.

[4 marks]

0 7

Do not write outside the box


High absorption of salt from the diet can result in a higher than normal concentration of salt in the blood plasma entering capillaries. This can lead to a build-up of tissue fluid.

Explain how.

[2 marks]

because bacteria divide rapidly, producing a large number of them in a short time. Describe how bacteria divide. [2 marks] [2 marks] [3 marks] [4 marks] [5			10	Do not wri outside th box
Q 4.2 Marks] 0 4.2 Washing powders often contain enzymes from bacteria. These enzymes include proteases that hydrolyse proteins in clothing stains. Figure 1 shows the effect of temperature on a protease that could be used in washing powder. Figure 1 Of 4.2 Percentage of maximum of protease maximum of the protease maximum of the protease maximum of the protease maximum of the proteins in clothing stains. Figure 1 Of 4.2 Of 4.2 <th>04.1</th> <th></th> <th></th> <th></th>	04.1			
Image: state of the state		Describe		
roteases that hydrolyse proteins in clothing stains. Figure 1 shows the effect of temperature on a protease that could be used in washing powder. Figure 1 Figure 1 Percentage of maximum protease activity 0 0 0 0 0 0 0 0 0 0 0 0 0			[2 marks	5]
roteases that hydrolyse proteins in clothing stains. Figure 1 shows the effect of temperature on a protease that could be used in washing powder. Figure 1 Figure 1 Percentage of maximum protease activity 0 0 0 0 0 0 0 0 0 0 0 0 0				
roteases that hydrolyse proteins in clothing stains. Figure 1 shows the effect of temperature on a protease that could be used in washing powder. Figure 1 Figure 1 Percentage of maximum protease activity 0 0 0 0 0 0 0 0 0 0 0 0 0				
roteases that hydrolyse proteins in clothing stains. Figure 1 shows the effect of temperature on a protease that could be used in washing powder. Figure 1 Figure 1 Percentage of maximum protease activity 0 0 0 0 0 0 0 0 0 0 0 0 0				_
roteases that hydrolyse proteins in clothing stains. Figure 1 shows the effect of temperature on a protease that could be used in washing powder. Figure 1 Figure 1 Percentage of maximum protease activity 0 0 0 0 0 0 0 0 0 0 0 0 0				_
Figure 1 Figure 1	04.2			
Figure 1 Figure 1 Figur				
$Percentage of maximum protease activity = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$		wasning		
Percentage of maximum protease activity e_{0} e_{0				
Percentage of maximum protease activity e_{0} e_{0		100		
Percentage of maximum protease activity 40		100-	30°C	
Percentage of maximum protease activity 40				
of maximum protease activity 60 40 40 40 40 40 40 40 4		80-		
protease activity $60 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $				
$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & &$	protea	ase 60-		
$ \begin{array}{c} $	activit	ЗУ		
$ \begin{array}{c} $				
		40-	N	
0 0 0 0 0 0 0 0 0 0 0 0 0 0				
		20-		
0 30 60 90 120 150 180		~		
Time / minutes		0-		
			Time / minutes	

	11	Do not write outside the box
	Explain the shape of the curves at 50 °C and 60 °C. [4 marks]	
04.3	Some proteases are secreted as extracellular enzymes by bacteria. Suggest one advantage to a bacterium of secreting an extracellular protease in its	
	natural environment.	
	Explain your answer. [2 marks]	
		-
		-
		_

Do not write outside the box

04.4

Mammals have some cells that produce extracellular proteases. They also have cells with membrane-bound dipeptidases.

Describe the action of these membrane-bound dipeptidases and explain their importance.

[2 marks]

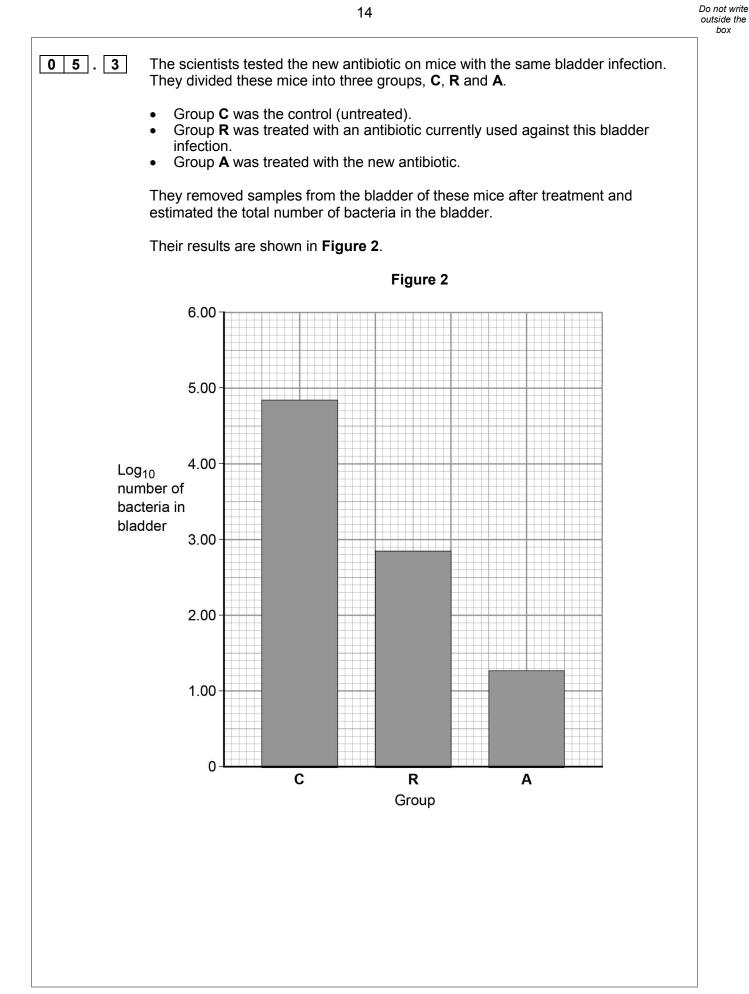
10

m

www.xtrapap 13	Do not write outside the
Scientists investigated treatment of a human bladder infection caused by a species of bacterium. This species of bacterium is often resistant to the antibiotics currently used for treatment.	box
They investigated the use of a new antibiotic to treat the bladder infection. The new antibiotic inhibits the bacterial ATP synthase enzyme.	
Place a tick (\checkmark) in the appropriate box next to the equation which represents the reaction catalysed by ATP synthase. [1 mark]	
$ATP \longrightarrow ADP + P_i + H_2O$	
$ATP + H_2O \longrightarrow ADP + P_i$	
$ADP + P_i \longrightarrow ATP + H_2O$	
$ADP + P_i + H_2O \longrightarrow ATP$	
The new antibiotic is safe to use in humans because it does not inhibit the ATP synthase found in human cells.	

Suggest why human ATP synthase is not inhibited and bacterial synthase is inhibited.

[1 mark]

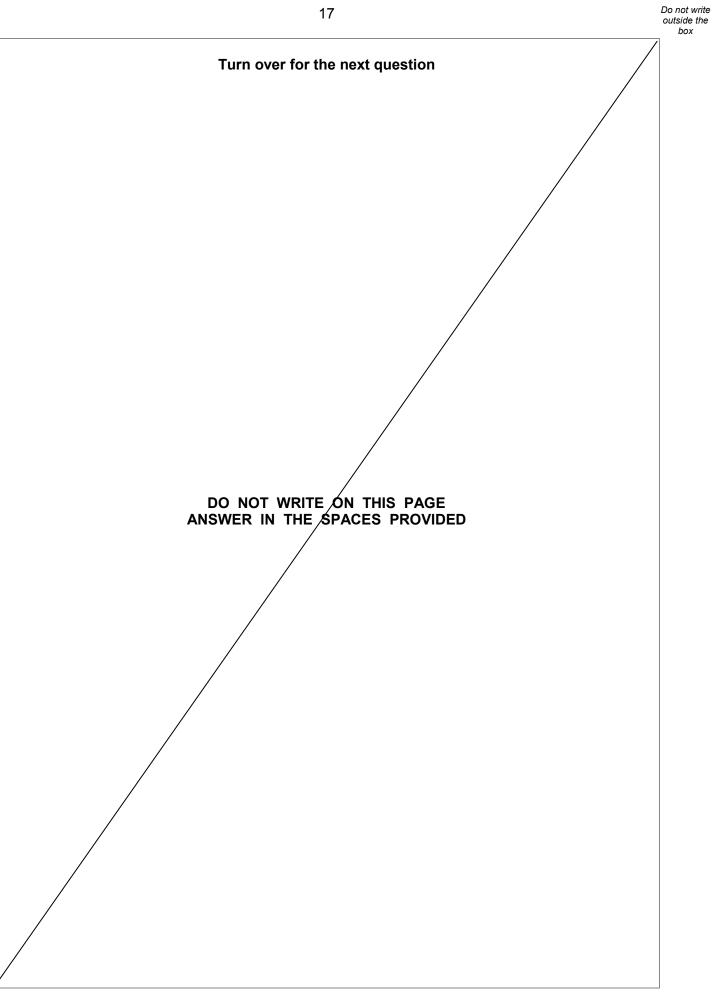

Question 5 continues on the next page

0 5

0 5 . 1

0 5 . 2

15


	15		Do not write outside the box
	The antibiotics were given to the mice at a dose of 25 mg kg ⁻¹ per day.		
	Calculate how much antibiotic would be given to a 30 g mouse each day.		
	Show your working.		
	[2	marks]	
	Answer =	mg	
	Colouiste the new stars difference is estual surplum of heatsrip is surplus	•	
0 5 . 4	Calculate the percentage difference in actual numbers of bacteria in group \mathbf{R} compared with group \mathbf{R} . The actual number of bacteria can be calculated fr \log_{10} value by using the 10^{*} function on a calculator.		
	Show your working.	2 marks]	
	-		
	Answer =	_ %	
	Question 5 continues on the next page		

1 5

www.xtrapapers.com

	16	Do not write outside the box
05.5	The scientists suggested that people newly diagnosed with this bladder infection should be treated with both the current antibiotic and the new antibiotic.	
	Explain why the scientists made this suggestion.	
	Use information from Figure 2 and your knowledge of evolution of antibiotic resistance in bacteria in your answer.	
	[3 marks]	
		9

Scientists investigated the effect of 2,4-D on wheat plants (a crop) and on wild oat plants (a weed).

They grew plants of both species in glasshouses. They put plants of each species into one of two groups, W and H, which were treated as follows:

- Group W leaves sprayed with water
- Group H leaves sprayed with a solution of 2,4-D.

After spraying, they cut 40 discs from the leaves of plants in each group and placed them in flasks containing 10 cm³ de-ionised water. After 5 minutes, they calculated the disruption to cell-surface membranes by measuring the concentration of ions released into the water from the leaf discs.

Their results are shown in Table 3.

The lowest significant difference (LSD), is the smallest difference between two means that would be significant at P≤0.05

Group	Treatment	Mean concentration of ions in water / arbitrary units		
-		Wheat	Wild oats	
w	Water	26	45	
Н	2,4-D	27	70	
Lowest significant difference (LSD)		7	10	

Table 3

0 6 . 1

0 6

species.

Give three environmental variables that should be controlled when growing the plants before treatment with the different sprays.

[2 marks]

_____ 1 2 3

IB/M/Jun17/E5

Do not write outside the box

19

06.2	Evaluate the use of 2,4-D as a herbicide on a wheat crop that contains w a weed. Use all the information provided.	ild oats as
		[4 marks]
	Question 6 continues on the next page	

[2 marks]

Do not write outside the box

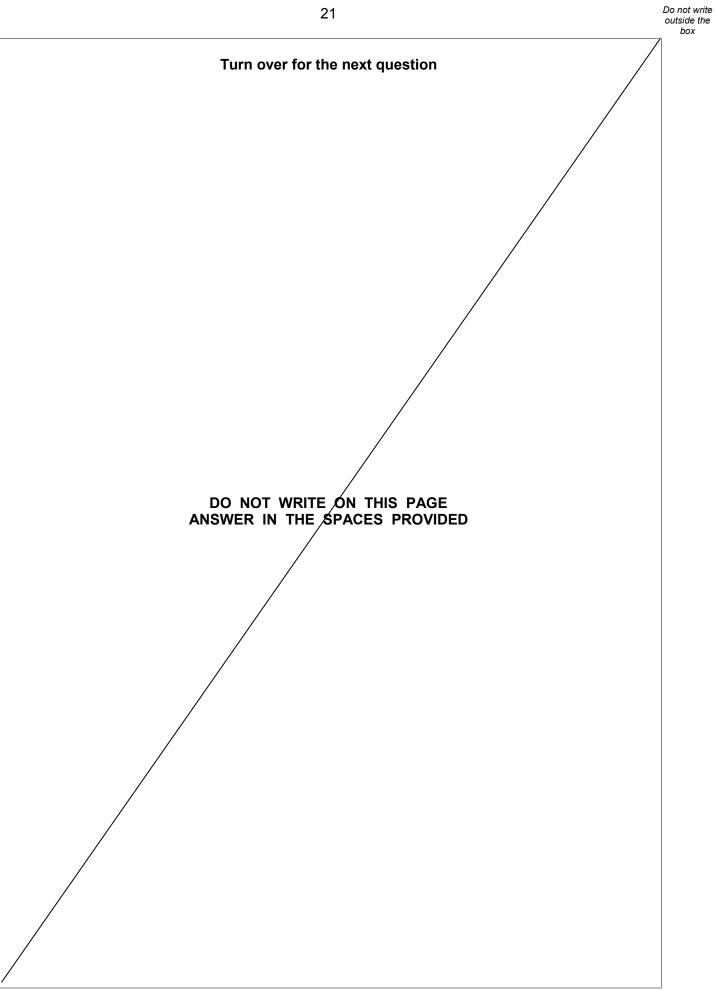
20

and **one** reason why the leaf discs were shaken.

Shaken

The scientists incubated the flasks containing the leaf discs at 26 °C and gently

Suggest one reason why the scientists ensured the temperature remained constant


0 6 . 3

shook the flasks.

Temperature

8

	22	Do not write outside the box
07.1	Describe how phagocytosis of a virus leads to presentation of its antigens. [3 marks]	
07.2	Describe how presentation of a virus antigen leads to the secretion of an antibody	
	against this virus antigen. [3 marks]	
		-

Do not write

outside the box

0 7 . 3

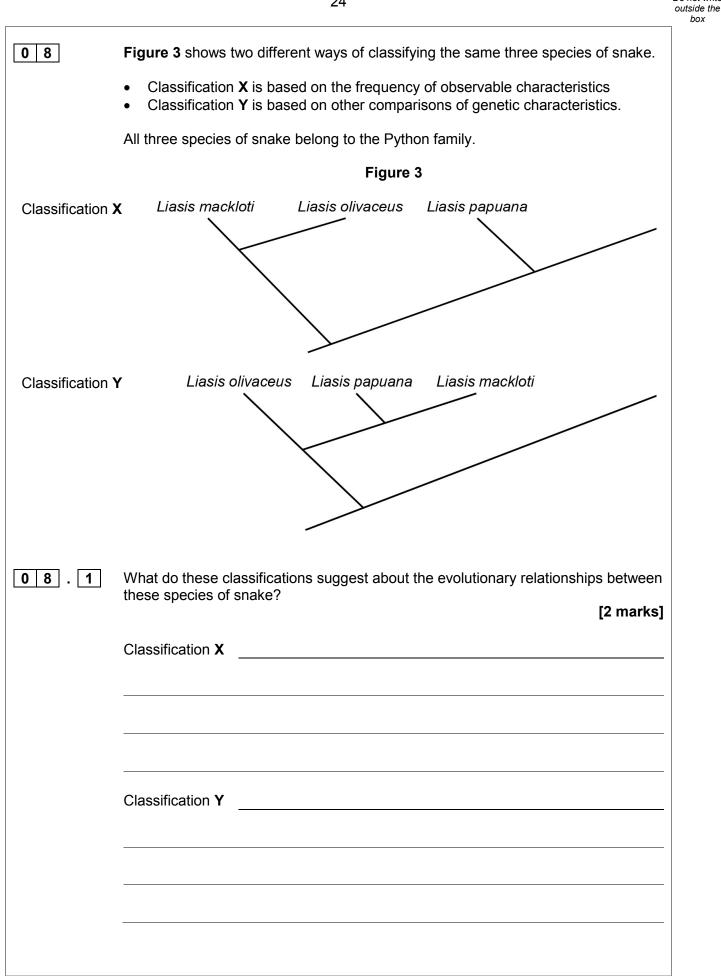
Collagen is a protein produced by cells in joints, such as the knee.

Rheumatoid arthritis (RA) is an auto-immune disease. In an auto-immune disease, a person's immune system attacks their own cells. RA causes pain, swelling and stiffness in the joints.

Scientists have found a virus that produces a protein very similar to human collagen.

Suggest how the immune response to this viral protein can result in the development of RA.

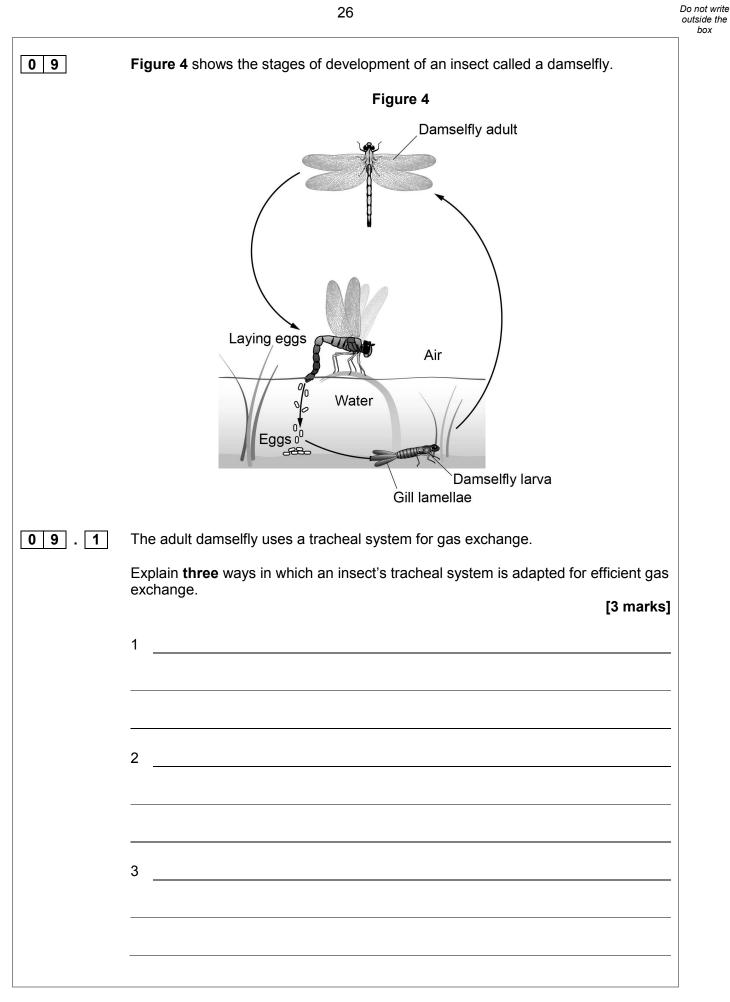
[2 marks]


8

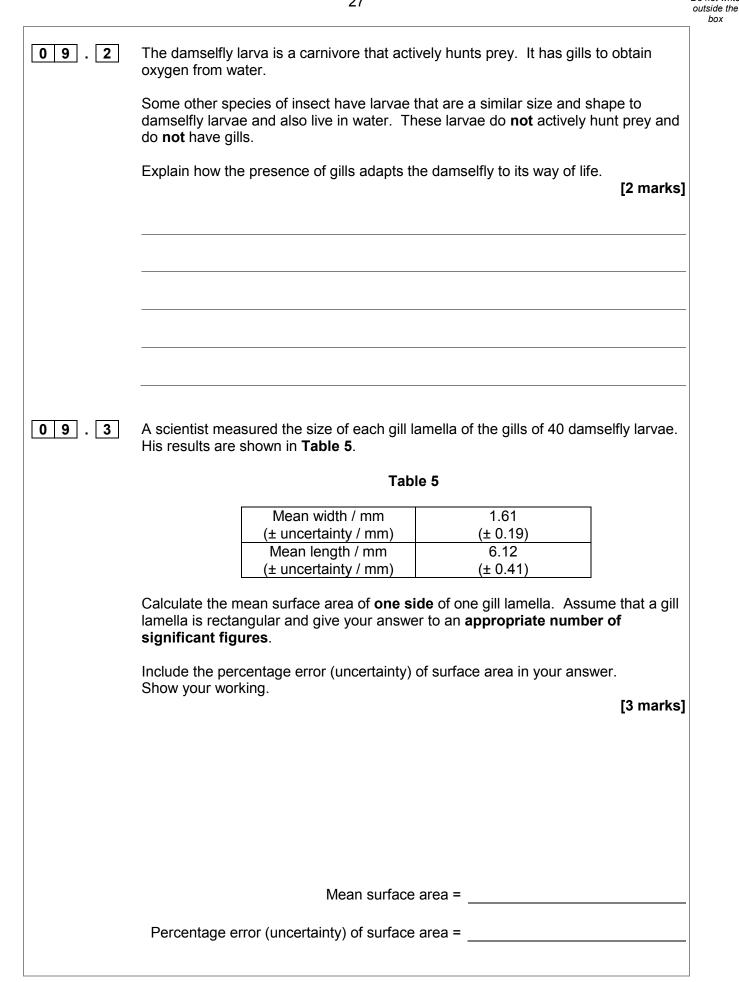
Turn over for the next question

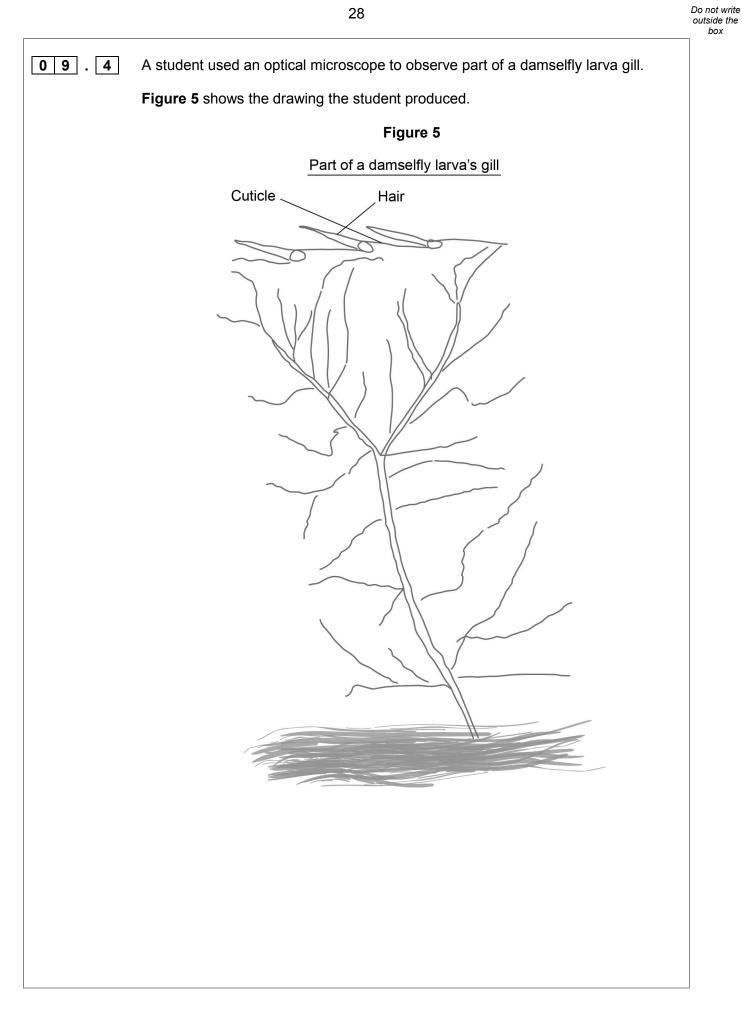
Do not write

box



Do not write outside the box


08.2	Complete Table 4 below to show the missing names of the taxa when classifying these snakes.			
		[1 mark]		
	Table 4			
	Taxon (hierarchical order)	Name		
		Eukaryote		
		Animal		
		Chordata		
		Reptilia		
		Squamata		
	Family	Python		
	Give the name of the taxon about which the scientis	[1 mark		
08.4	State three comparisons of genetic diversity that th generate Classification Y .	e scientists used in order to [3 marks		
	2			
	3			



Do not write

IB/M/Jun17/E5

29

2 _____

1

Do not write outside the box

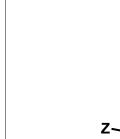
Suggest **two** ways the student could improve the quality of her scientific drawing of this gill.

[2 marks]

10

Turn over for the next question

liapa	per 3.0011
	Do not write
	outside the
	box


Contrast how an optical microscope and a transmission electron m and contrast the limitations of their use when studying cells.	[6 ma

Do not write outside the box

31

10.2 Figure 6 shows an image from an optical microscope of meiosis occurring in a flower bud of a flowering plant. W and Z are undergoing meiosis.

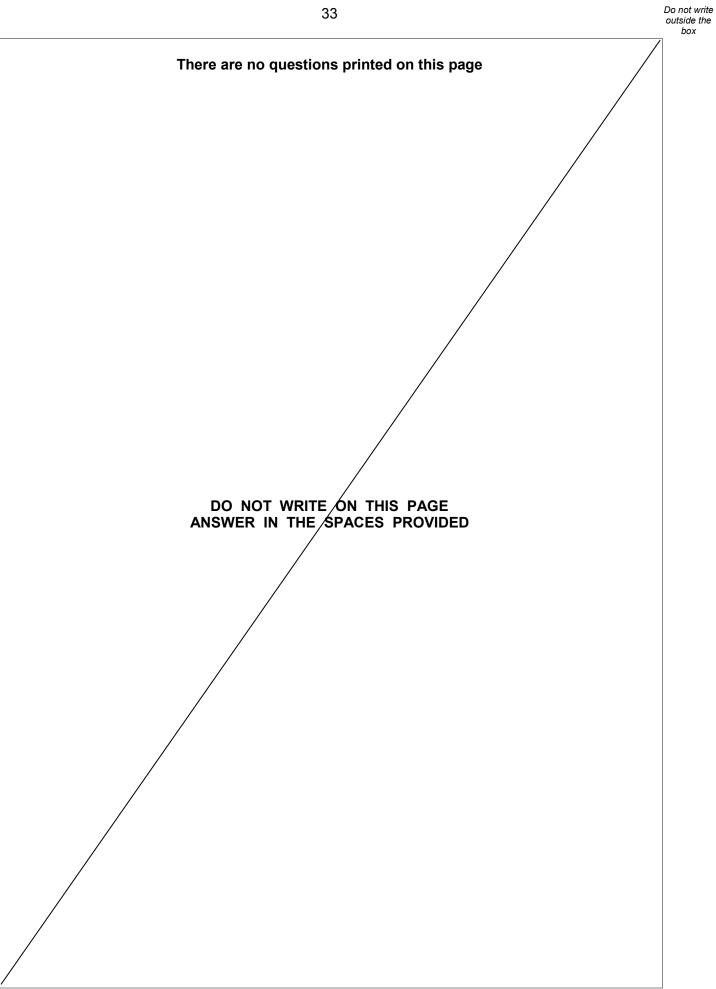
Figure 6 W Explain the appearance of **W** and **Z**. [4 marks]

Do not write

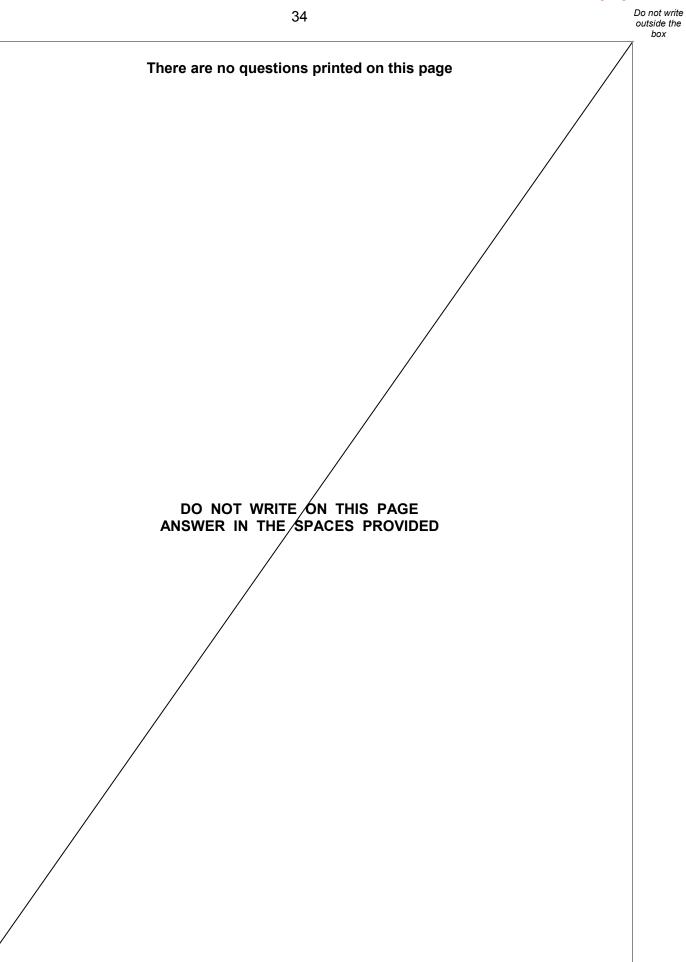
outside the box

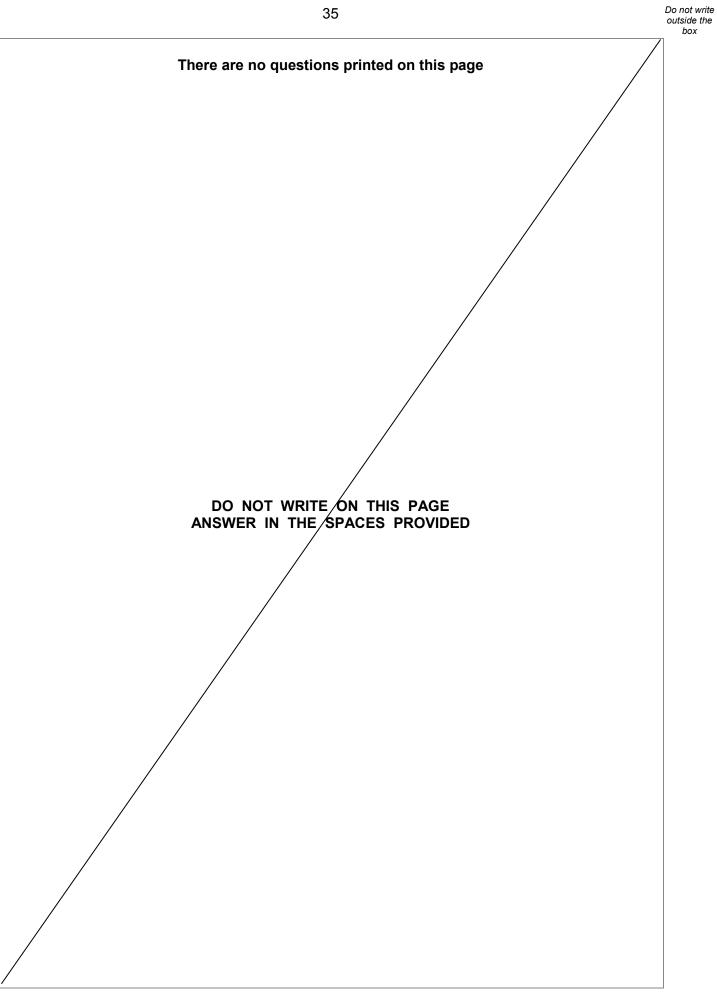
10.3

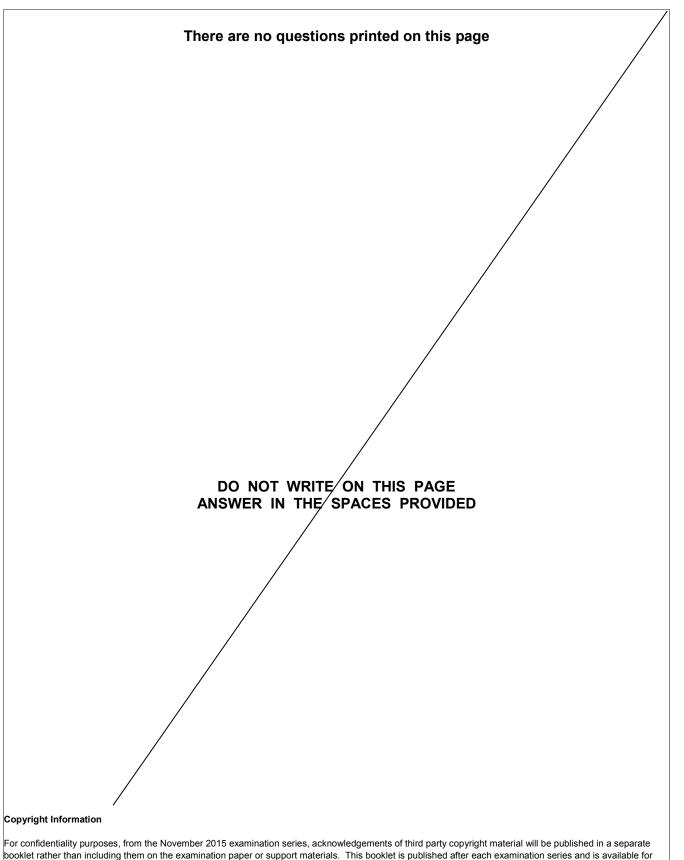
An environmental scientist investigated a possible relationship between air pollution and the size of seeds produced by one species of tree.


He was provided with a very large number of seeds collected from a population of trees in the centre of a city and also a very large number of seeds collected from a population of trees in the countryside.

Describe how he should collect and process data from these seeds to investigate whether there is a difference in seed size between these two populations of trees. [5 marks]


END OF QUESTIONS





Do not write outside the

box

booklet rather than including them on the examination paper or support m free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

