

Please write clearly in	n block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature	_		

A-level **BIOLOGY**

Paper 2

Tuesday 20 June 2017

Morning

Time allowed: 2 hours

Materials

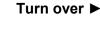
For this paper you must have:

- · a ruler with millimetre measurements
- a calculator.

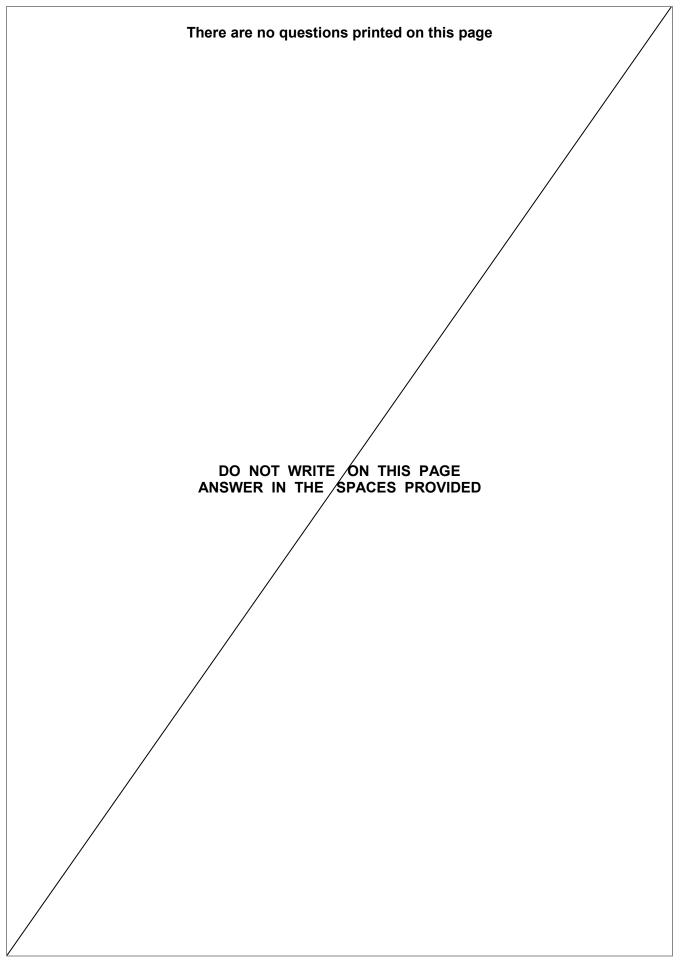
Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All work must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information


- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 91.

For Examiner's Use					
Question	Mark				
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
TOTAL					


	Answer all questions in the spaces provided.
0 1 . 1	Exercise causes an increase in heart rate. Describe the role of receptors and of the nervous system in this process. [4 marks]

0 1 . 2	AMP-activated protein kinase (AMPK) is an enzyme that regulates a number of cellular processes. Exercise leads to activation of AMPK.					
	Figure 1 shows one effect of activation of AMPK during exercise.					
	Figure 1					
	AMPK					
	Leads to inhibition of					
	Acetyl-CoA → Malonyl-CoA					
	Leads to inhibition of					
	CPT1 transport of fatty acids ────────────────────────────────────					
CPT1 is a channel protein that transports fatty acids into mitochondria.						
	Using Figure 1 , explain the benefit of activation of AMPK during exercise. [3 marks]					

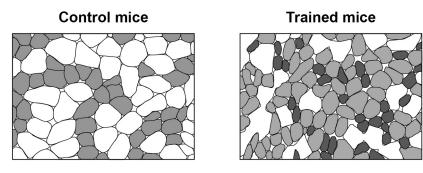
0 2	Dengue is a serious disease that is caused by a virus. The virus is carrie one person to another by a mosquito, <i>Aedes aegypti</i> . One method used reduce transmission of this disease is the Sterile Insect Technique (SIT). involves releasing large numbers of sterile (infertile) male <i>A. aegypti</i> into habitat. These males have been made infertile by using radiation.	to try to This
0 2 . 1	Explain how using the SIT could reduce transmission of dengue.	[2 marks]
02.2	Describe how the mark-release-recapture method could be used to determine the population of <i>A. aegypti</i> at the start of the investigation.	rmine the [3 marks]
	Question 2 continues on the next page	

0 2 . 3	The release of radiation-sterilised <i>A. aegypti</i> has not been very successful in controlling the transmission of dengue.	
	Suggest one reason why. [1 mail	rk]
0 2 . 4	Recently a new method was developed to control <i>A. aegypti</i> . Scientists produced	
0 2 . 4	transgenic males carrying a 'lethal gene' which kills their offspring before they car reproduce.	
	The scientists released transgenic males every week in one area of a city in Brazi At regular intervals they determined the number of <i>A. aegypti</i> per km² in the area where transgenic males were released and in a control area where no transgenic males were released.	l.
	Figure 2 shows their results.	
	Figure 2	
Numbe	900 Key Treated are Control area Food Food	
<i>A. aegy</i> per km²	200- 100-	
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 Time / weeks	6
	Suggest why the scientists released more transgenic males every week.	rk]

9

0 2 . 5	The release of transgenic males proved successful in reducing the number of A. aegypti.			
	Describe how the results in Figure 2 support this conclusion.	[2 marks]		

Turn over for the next question



0 3

Scientists investigated the effect of regular exercise on skeletal muscle fibres in mice. The scientists compared the muscle fibres of mice after six weeks of regular exercise (trained mice) with those of mice that had not exercised (control mice). The scientists stained the muscle fibres from both sets of mice to show succinic acid dehydrogenase activity. The darker the stain the greater the succinic acid dehydrogenase activity.

Figure 3 shows a typical set of results they obtained.

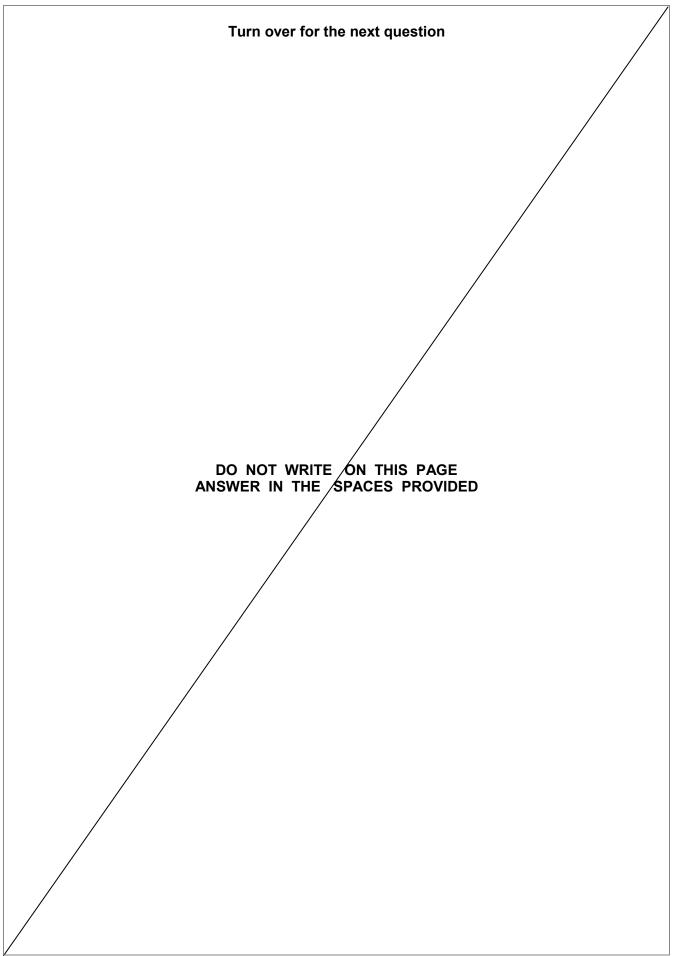
Figure 3

0	3		1	Succinic acid dehydrogenase	is an enzyme used in the Krebs cycle	Э.
---	---	--	---	-----------------------------	--------------------------------------	----

Suggest **one** reason for the difference in the staining between the muscle fibres of the control mice and the trained mice.

[1 mark]

0 3 . 2	The scientists then compared the length of time that the control mice and the trained mice could carry out prolonged exercise. The trained mice were able to exercise for a longer time period than control mice.
	Explain why. [3 marks]
0 3 . 3	The scientists determined the mean diameter of muscle fibres in trained mice using an optical microscope to examine sections of muscle tissue. The circular area (πr^2) of one field of view was 1.25 mm ² . The diameter of this area was equal to the diameter of 15 muscle fibres.
	Using this information, calculate the mean diameter in µm (micrometres) of muscle fibres in this section of tissue. [2 marks]
	[2 marks]
	Answer = μm
	Question 3 continues on the next page



			Figu	e 4		
Number of muscle fibres	10	30 1uscle fibre	50 diameter / p	70	Ke	y — Young mice Adult mice
Describ	e two differe	ences betwe	en these sa	amples of n	nuscle fibro	es.

8

4

A student isolated chloroplasts from spinach leaves into a solution to form a chloroplast suspension. He used the chloroplast suspension and DCPIP solution to investigate the light-dependent reaction of photosynthesis. DCPIP solution is blue when oxidised and colourless when reduced.

The student set up three test tubes as follows:

- **Tube 1** 1 cm³ of solution without chloroplasts and 9 cm³ of DCPIP solution in light.
- **Tube 2** 1 cm³ of chloroplast suspension and 9 cm³ of DCPIP solution in darkness.
- Tube 3 1 cm³ of chloroplast suspension and 9 cm³ of DCPIP solution in light.

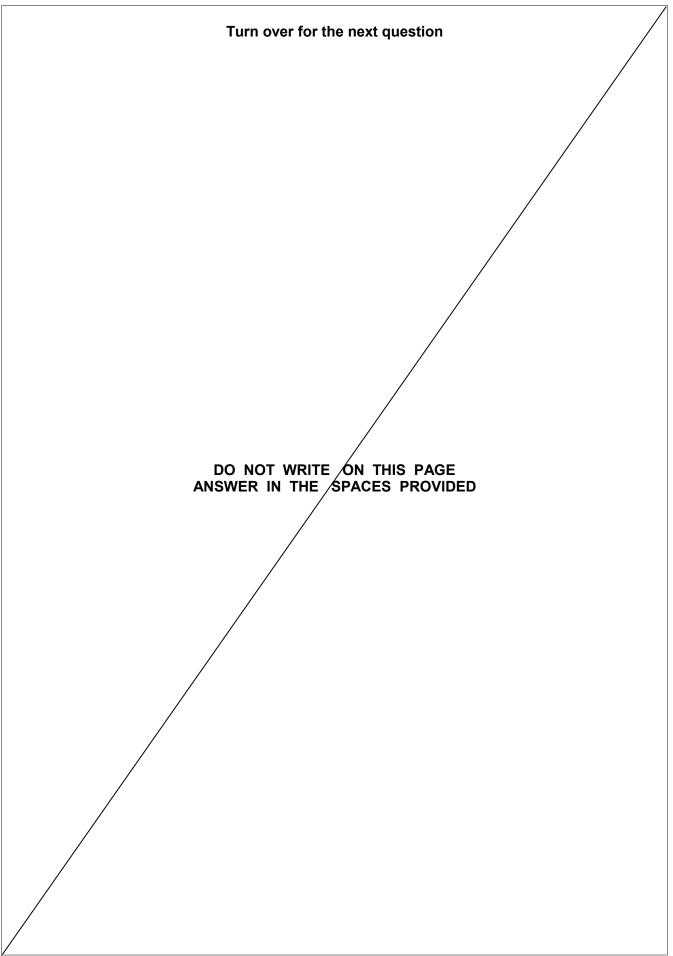
The student recorded the colour of the DCPIP in each of the tubes at the start and after the tubes had been left at 20 °C for 30 minutes.

His results are shown in **Table 1**.

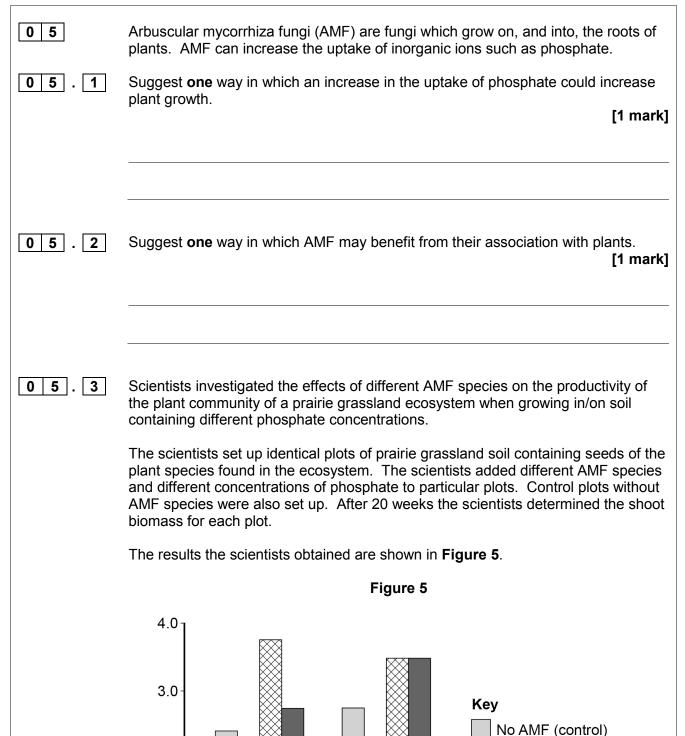
Table 1

Tube	Colour of D	CPIP in tube
Tube	At start	After 30 minutes
1	blue	blue
2	blue	blue
3	blue	colourless

0 4 . 1	The solution that the student used to produce the chloroplast suspension same water potential as the chloroplasts.	had the
	Explain why it was important that these water potentials were the same.	[2 marks]



0 4 . 2	Explain why the student set up Tube 1 . [2 marks]
0 4 . 3	Explain the results in Tube 3 . [2 marks]
0 4 . 4	The student evaluated the effectiveness of different chemicals as weed-killers by assessing their ability to prevent the decolourisation of DCPIP in chloroplast suspensions.
	He added different concentrations of each chemical to illuminated chloroplast suspensions containing DCPIP. He then determined the IC $_{50}$ for each chemical. The IC $_{50}$ is the concentration of chemical which inhibits the decolourisation of DCPIP by 50%.
	Explain the advantage of the student using the IC_{50} in this investigation. [1 mark]
	Question 4 continues on the next page



0 4 . 5	Explain how chemicals which inhibit the decolourisation of DCPIP could growth of weeds.	slow the	
	growth of weeds.	[2 marks]	

Log_e (shoot

biomass / g)

2.0

1.0

0.0

Normal soil

phosphate

concentration

2 × soil

phosphate

concentration

Scutellospora fulgida

Glomus claroideum

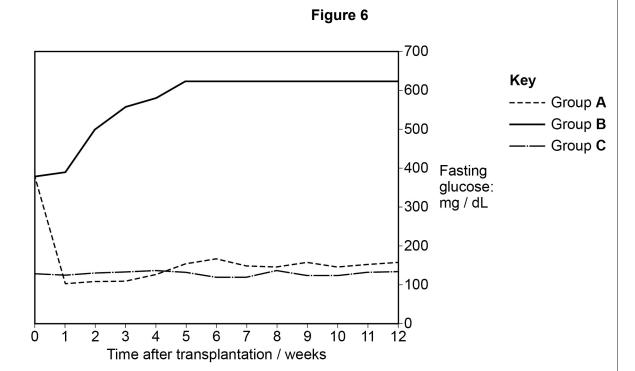
Entrophospora infrequens

	Explain why an increase in shoot biomass can be taken as a measurement primary productivity.	ent of
	net primary productivity.	[2 marks]
0 5 . 4	Using the data from Figure 5 , evaluate the effect on plant productivity of	adding
0 3 . 4	AMF species and adding phosphate to the soil.	[4 marks]
		_
	Question 5 continues on the next page	

0 5 . 5	Using the e ^x button on your calculator, determine the rate of shoot biomass production in grams per day for the control plot in soil with normal phosphate concentration. [2 marks]	
	Answer = g day ⁻¹	

0 6 . 1	Each year, a few people with type I diabetes are given a pancreas transplant. Pancreas transplants are not used to treat people with type II diabetes.
	Give two reasons why pancreas transplants are not used for the treatment of type II diabetes.
	[2 marks]
	1
	2
0 6 . 2	The pancreas produces the hormone insulin.
	Put a tick (✓) in the box next to the statement which describes incorrectly the action of insulin.
	[1 mark]
	Activates enzymes involved in the conversion of glucose to glycogen.
	Controls the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells.
	Attaches to receptors on the surfaces of target cells.
	Activates enzymes involved in the conversion of glycerol to glucose.
	Question 6 continues on the payt page
	Question 6 continues on the next page

0 6 . 3


Scientists investigated the use of induced pluripotent stem cells (iPS cells) to treat type I diabetes in mice. The scientists used four transcription factors to reprogramme skin cells to form iPS cells. The scientists then stimulated the *in vitro* differentiation of iPS cells into pancreatic cells.

The scientists set up three experimental groups:

- Group A 30 mice with type I diabetes received pancreatic cell transplants derived from iPS cells.
- Group B 30 mice with type I diabetes were left untreated.
- Group **C** 30 mice without diabetes were left untreated.

The scientists measured the blood glucose concentration of all the mice on a weekly basis for 12 weeks.

The results the scientists obtained are shown in **Figure 6**.

Suggest how transcription factors can reprogramme cells to form iPS cells.

[2 marks]

9

0 6 . 4	Using all the information provided, evaluate the use of iPS cells to treat type I diabetes in humans.	[4 marks]

Turn over for the next question

0 7 . 1	What is meant by the term phenotype? [2 marks]
0 7 . 2	The inheritance of fruit colour in summer squash plants is controlled by two genes, A and B . Each gene has two alleles.
	Figure 7 shows the interaction of these two genes in controlling fruit colour in summer squash plants.
	Figure 7
	aa B
	↓ ↓ ↓
	Enzyme 1 Enzyme 2
	White → Green → Yellow
	↑
	Inhibition No functional enzyme
	Å bb
	Name the type of gene interaction shown in Figure 7 .
	[1 mark]
	Will at finite and a superior of the fall and a superior of the same of the superior of the su
0 7 . 3	What fruit colour would you expect the following genotypes to have? [1 mark]
	AAbb
	aaBB

23

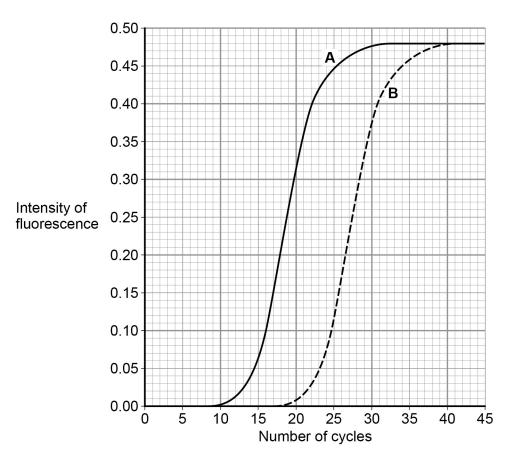
Do not write outside the box

	Complete the genetic diagonal phenotypes expected in the			oes and the ratio of
	pricriotypes expected in the	c onspring or this	0 01033.	[3 marks]
	Genotypes of parents	aabb	×	AaBb
	Genotypes of offspring			
	Phenotypes of offspring			
	Ratio of phenotypes			
7 . 5	A population of summer so	uuseh nlante prod		
	percentage of plants produ			
	percentage of plants produ Use the Hardy-Weinberg	icing yellow fruit i	n this population w	as 36%.
	percentage of plants produ	icing yellow fruit i	n this population w	as 36%.
	percentage of plants produ Use the Hardy-Weinberg	icing yellow fruit i	n this population w	as 36%. e of plants that were
	percentage of plants produ Use the Hardy-Weinberg	icing yellow fruit i	n this population w	as 36%. e of plants that were
	percentage of plants produ Use the Hardy-Weinberg	icing yellow fruit i	n this population w	as 36%. e of plants that were
	percentage of plants produ Use the Hardy-Weinberg	icing yellow fruit i	n this population w	as 36%. e of plants that were
	percentage of plants produ Use the Hardy-Weinberg	icing yellow fruit i	n this population w	as 36%. e of plants that were
	percentage of plants produ Use the Hardy-Weinberg	icing yellow fruit i	n this population w	as 36%. e of plants that were
	percentage of plants produ Use the Hardy-Weinberg	icing yellow fruit i	n this population w	as 36%. e of plants that were
	percentage of plants produ Use the Hardy-Weinberg	icing yellow fruit i	n this population was	as 36%. e of plants that we

Turn over for the next question

	24
0 8	One way to detect and measure accurately the amount of RNA in a tissue sample is by RT-PCR (reverse transcriptase-polymerase chain reaction). RT-PCR uses a reaction mixture containing:
	 the sample for testing reverse transcriptase DNA nucleotides primers DNA polymerase fluorescent dye.
	The principle behind this method is shown in Figure 8 .
	Figure 8
	Amount of DNA amplified by PCR depends on the amount of RNA in the sample.
	The dye only fluoresces when bound to DNA.
	The intensity of the fluorescent light emitted increases as the PCR products accumulate.

[1 mark]	Explain the role of reverse transcriptase in RT-PCR.	0 8 . 1


0 8 . 2	Explain the role of DNA polymerase in RT-PCR. [1 mark]
08.3	Any DNA in the sample is hydrolysed by enzymes before the sample is added to the reaction mixture. Explain why.
	[2 marks]
	Question 8 continues on the next page

0 8 . 4

Figure 9 shows the results from using RT-PCR to detect RNA in two different samples, **A** and **B**.

Figure 9

A quantitative comparison can be made of the amount of RNA in samples **A** and **B**. This involves determining the number of cycles required to reach 50% maximum concentration of DNA (**C**).

The amount of RNA in a sample can be measured as: $\frac{1}{c}$

Use this information to calculate the ratio for RNA content in sample ${\bf A}$: RNA content in sample ${\bf B}$.

[2 marks]

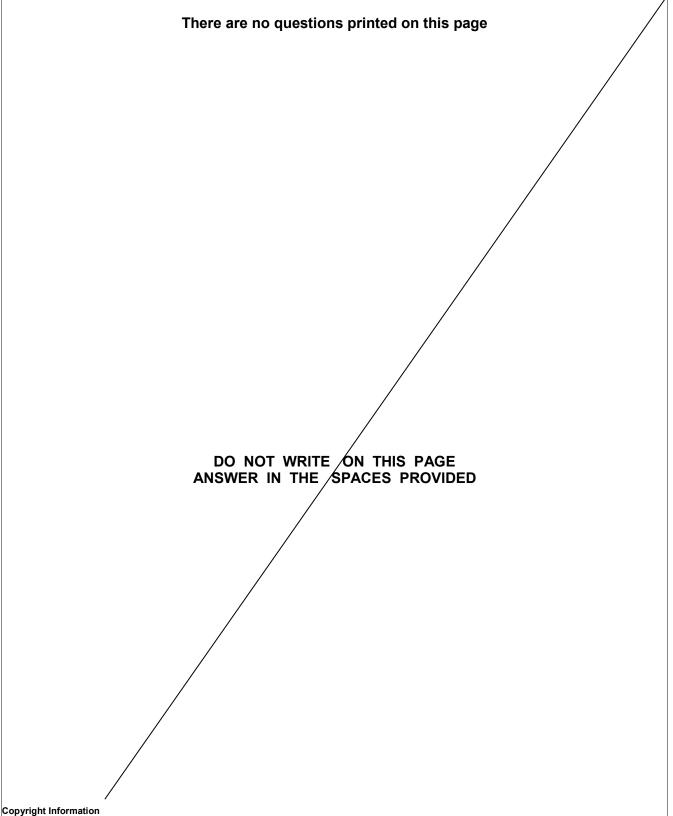
Answer = ____

0 8 . 5	Suggest one reason why DNA replication stops in the polymerase chain reaction. [1 mark]
08.6	Scientists have used the DT DCP method to detect the presence of different DNA
0 8 . 6	Scientists have used the RT-PCR method to detect the presence of different RNA viruses in patients suffering from respiratory diseases. The scientists produced a variety of primers for this procedure.
	Explain why. [2 marks]
	Turn over for the payt question
	Turn over for the next question

0 9 . 1	What is a gene pool? [1 mark]
0 9 . 2	Lord Howe Island in the Tasman Sea possesses two species of palm tree which have arisen via sympatric speciation. The two species diverged from each other	-
	after the island was formed 6.5 million years ago. The flowering times of the two species are different. Using this information, suggest how these two species of palm tree arose by sympatric speciation.	
	[5 marks] -
		-
		-
		-
		-
		- - -
		-
		-

1 0	Alzheimer's disease (AD) is a non-reversible brain disorder that develops over a number of years. At the start of 2014 the number of Americans with AD was estimated to be 5.4 million. Every 30 seconds another person in America develops AD. In the brain of a person with AD there is a lower concentration of acetylcholine. This affects communication between nerve cells and initially results in memory loss and confusion. Some of the symptoms of AD that are associated with communication between nerve cells are reduced by taking the drug donepezil. Donepezil inhibits the enzyme acetylcholinesterase.	5
	A gene mutation called E280A found on chromosome 14 causes early-onset AD 1 at a mean age of 49 years. The age at which the E280A mutation is expressed to cause AD varies.	0
	Yaramul is a town in a historically isolated region of the Andes Mountains. The population of this town has the highest frequency of the E280A mutation in the world. The origin of the E280A mutation in this population has been traced back 1 to a common ancestor in the 17th century. Natural selection has not reduced the frequency of the E280A mutation in the population.	5
	This autosomal dominant mutation involves a change in triplet 280 from GAA to GCA. Scientists analysed chromosome 14 from 102 individuals from Yaramul. They recorded a sample size of 204 and detected 75 E280A mutations but only 2 74 potential AD cases. The scientists identified individuals with the mutation by whole genome sequencing. They had decided that a DNA probe would not be a suitable method to detect the E280A mutation.	:O
10.1	Assuming no one with AD died in 2014, calculate the annual percentage increase i AD cases in America for 2014 (lines 2–4). [2 marks]	
	Answer	%
I		

Question 10 continues on the next page



1 0 . 2	Explain how donepezil could improve communication between nerve cel	ls (lines
	7–9).	[3 marks]
1 0 . 3	Suggest and explain two reasons why there is a high frequency of the E mutation in Yaramul (lines 13–15).	280A
	,	[2 marks]
	1	
	2	
1 0 . 4	Explain why natural selection has not reduced the frequency of the E280	DΑ
	mutation in the population (lines 16–17).	[2 marks]

1 0 . 5	The age at which the E280A mutation is expressed to cause AD can vary (lines 11–12).	
	Suggest and explain one reason for this. [2 mail	rks]
1 0 . 6	One scientific study which analysed chromosome 14 involved 102 individuals. T scientists recorded a sample size of 204. In this sample they detected 75 E2804 mutations but only 74 potential AD cases (lines 19–21).	
	Suggest explanations for the figures the scientists recorded. [2 mar	rks]
1 0 . 7	Suggest why a DNA probe for the mutated triplet was not considered a suitable method for detection of the E280A mutation (lines 22–23). [2 mail	rks]
	END OF QUESTIONS	

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

