

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

A-level CHEMISTRY

Paper 2 Organic and Physical Chemistry

Monday 19 June 2017

Morning

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this booklet. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

\mathbf{r}	
2	
_	

Do not write outside the box

Answer all questions in the spaces provided		
0 1	Figure 1 shows some compounds made from a halogenoalkane.	
	Figure 1	
	Compound J $\leftarrow \frac{\text{Reaction 1}}{\text{NaOH(aq)}}$ CH ₃ CH ₂ CH ₂ Br $\xrightarrow{\text{Reaction 2}}$ CH ₃ CH ₂ CH ₂ NH ₂	
	Reaction 3	
	C ₃ H ₆	
0 1 . 1	Draw the displayed formula of compound J . [1 mark]	[]
	-	
0 1 . 2	Name the mechanism for Reaction 2 and give an essential condition used to	
	ensure that CH ₃ CH ₂ CH ₂ NH ₂ is the major product. [2 marks	;]
	Name of mechanism	
	Condition	_
		-
0 1 . 3	Calculate the mass, in grams, of $CH_3CH_2CH_2NH_2$ produced from 25.2 g of $CH_3CH_2CH_2Br$ in Reaction 2 assuming a 75.0% yield.	
	Give your answer to the appropriate number of significant figures. [3 marks]	1
		-
	Mass g	
]

-		
	ĸ	
•	,	

		Do not writ outside the box
0 1 . 4	When Reaction 2 is carried out under different conditions, a compound with molecular formula C ₉ H ₂₁ N is produced. Draw the skeletal formula of the compound. Identify the functional group in the compound including its classification. [2 marks] Skeletal formula]
	Functional group including classification	
0 1 . 5	Identify the reagent and conditions used in Reaction 3 .]
0 1 . 6	Name and outline a mechanism for Reaction 3 . [4 marks]	1
	Name of mechanism	_
	Mechanism	
		13

www.xtrap	apers.com
	Do not write

	5		Do not write outside the box
02.3	The experiment was repeated at the same temperature and with the initial concentration of B but with a different initial concentration of A . The new initial rate was 1.7 times greater than in the original experiment		
	Calculate the new initial concentration of A .	[2 marks]	
	Initial concentration of A	mol dm ⁻³	
			4
	Turn over for the next question		

Do not write
outside the
box

0 3	A series of experiments is carried out with compounds C and D . Using the data obtained, the rate equation for the reaction between the two compounds is deduced to be
	rate = k[C][D]
	In one experiment at 25 °C, the initial rate of reaction is 3.1×10^{-3} mol dm ⁻³ s ⁻¹ when the initial concentration of C is 0.48 mol dm ⁻³ and the initial concentration of D is 0.23 mol dm ⁻³
03.1	Calculate a value for the rate constant at this temperature and give its units. [3 marks]
	Rate constant Units

Do not write outside the

box

7

An equation that relates the rate constant, k, to the activation energy, E_a , and the temperature, T, is

$$\ln k = \frac{-E_a}{RT} + \ln A$$

Use this equation and your answer from Question **3.1** to calculate a value, in $kJ \text{ mol}^{-1}$, for the activation energy of this reaction at 25 °C.

For this reaction $\ln A = 16.9$

The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

(If you were unable to complete Question **3.1** you should use the value of 3.2×10^{-3} for the rate constant. This is not the correct value.)

[4 marks]

4 ww

/w.xtrapapers.co	m
------------------	---

		not write tside the box
0 4	The aldehyde $CH_3CH_2CH_2CH_2CHO$ reacts with KCN followed by dilute acid to form a racemic mixture of the two stereoisomers of $CH_3CH_2CH_2CH_2CH(OH)CN$	
04.1	Give the IUPAC name of CH ₃ CH ₂ CH ₂ CH ₂ CH(OH)CN [1 mark]	
04.2	Describe how you would distinguish between separate samples of the two stereoisomers of CH ₃ CH ₂ CH ₂ CH ₂ CH(OH)CN [2 marks]	
04.3	Explain why the reaction produces a racemic mixture. [3 marks]	

8

1	0

		1	0			Do not writ outside the box
0 5	Ethanoic acid and ethane-1,2-diol react together to form the diester ($C_6H_{10}O_4$) as shown.					
	2CH₃COOH	(I) + HOCH	$_{2}CH_{2}OH(I) \Rightarrow C$	₅H ₁₀ O₄(I) + 2	H ₂ O(I)	
0 5.1	Draw a structural	formula for th	ne diester C ₆ H ₁₀ O ₄		[1 mark	1
						.1
0 5.2	A small amount of ethanoic acid and		added to a mixture ethane-1,2-diol.	e of 0.470 mol o	of	
	The mixture was	left to reach e	equilibrium at a cons	stant temperatu	ıre.	
	Complete Table	Complete Table 1. Table 1				
		Amou	nt in the mixture /	mol		
		CH₃COOH	HOCH ₂ CH ₂ OH	$C_6H_{10}O_4$	H ₂ O	
	At the start	0.470	0.205	0	0	
	At equilibrium	0.180				
					[3 marks	5]
	Space for working					

		11				Do not writ outside the box
0 5 . 3	Write an expression for the equilibrium constant, K_c , for the reaction.					
	The total volume of the mixture does not need to be measured to allow a correct value for K_c to be calculated.					
	Justify this statem	ent.				
	Expression				[2 mark	s]
	Justification					
0 5.4	and left to reach equilibrium at a different temperature from the experiment in Question 5.2					
	The amounts pres		Table 2			
		Amount i	n the mixture / m	ol		
		CH₃COOH	HOCH ₂ CH ₂ OH	$C_6H_{10}O_4$	H ₂ O	
	At new equilibrium	To be calculated	0.264	0.802	1.15	
	The value of <i>K</i> _c wa Use this value and ethanoic acid pres Give your answer	d the data in Ta sent in the new	ble 2 to calculate equilibrium mixture	the amount, i e.		s]
	Amount of etha	noic acid			mol	
						9

Do not write outside the box

1	2
	~

Use the Data Booklet to help you answer this question. This question is about amino acids and peptide (amide) links. 1 Draw the structure of the zwitterion formed by phenylalanine. [1 mark] 2 Draw the structure of serine at high pH. [1 mark] S Draw the structures of both dipeptides formed when phenylalanine reacts with serine. In each structure show all the atoms and bonds in the amide link. [2 marks]

0

0

0

0

6 .

6

.

6

6

.

Do not write outside the box

06.4	An amide link is also formed when an acyl chloride reacts with a primary amine.	
	Name and outline a mechanism for the reaction between CH_3CH_2COCl and $CH_3CH_2NH_2$	
	Give the IUPAC name of the organic product. [6 mark	s]
	Name of mechanism	
	Mechanism	
	IUPAC name of organic product	

	15	Do not write outside the box
	This question is about nitrobenzenes.	
1	Nitrobenzene reacts when heated with a mixture of concentrated nitric acid and concentrated sulfuric acid to form a mixture of three isomeric dinitrobenzenes.	b
	Write an equation for the reaction of concentrated nitric acid with concentrated sulfuric acid to form the species that reacts with nitrobenzene. [1 mark	
. 2	Name and outline a mechanism for the reaction of this species with nitrobenzene to form 1,3-dinitrobenzene.	_
	[4 marks	5]
	Name of mechanism	_
	Mechanism	
	Turn over for the next question	

0 8

0

0 8

Do not write
outside the
box

0 8 . 4	State in general terms what determines the distance travelled by a spot in TLC. [1 mark]
0 8 . 5	To obtain the chromatogram, the TLC plate was held by the edges and placed
	in the solvent in the beaker in the fume cupboard. The lid was then replaced on the beaker.
	Give one other practical requirement when placing the plate in the beaker. [1 mark]
08.6	A second TLC experiment was carried out using 1,2-dinitrobenzene and 1,4-dinitrobenzene. An identical plate to that in Question 8.3 was used under the same conditions with the same solvent. In this experiment, the R_f value of 1,4-dinitrobenzene was found to be greater than that of 1,2-dinitrobenzene.
	Deduce the relative polarities of the 1,2-dinitrobenzene and 1,4-dinitrobenzene and explain why 1,4-dinitrobenzene has the greater R_f value. [2 marks]
	Relative polarities
	Explanation

1	8
1	0

Do not write outside the box

08.7	A third TLC experiment was carried out using 1,2-dinitrobenzene. An identical plate to that in Question 8.3 was used under the same conditions, but the solvent used contained a mixture of hexane and ethyl ethanoate. A student stated that the R _f value of 1,2-dinitrobenzene in this third experiment would be greater than that of 1,2-dinitrobenzene in the experiment in Question 8.6 Is the student correct? Justify your answer.
	[2 marks]

Do not write outside the box

09	Use the Data Booklet to help you answer these questions.	
	DNA exists as two strands of nucleotides in the form of a double h hydrogen bonding between the two strands.	elix with
09.1	A deoxyribose molecule in a strand of DNA is shown.	
	[DNA strand]	
	Name the types of group attached to 2-deoxyribose at positions X	and Y. [2 marks]
	x	
	Υ	
09.2	In the DNA double helix, adenine is linked by hydrogen bonds to a the other strand of DNA.	a molecule in
	Complete the diagram below to show the other molecule and the hydrogen bonds between it and adenine.	[2 marks]
[DNA strand	H H H H H H H H H H H H H H H H H H H	Turn over ►

0	^
1	()
_	0

	20	Do not write outside the box
1 0	This question is about six isomers of $C_6H_{10}O_2$	
10.1	Give the full IUPAC name of isomer P .	
	CH ₃ CH ₂ COOH	
	$CH_{3}CH_{2}$ $COOH$ CH_{3} CH_{3}	
	P	
	[1 mar	k]
10.2	A sample of P was mixed with an excess of oxygen and the mixture ignited. After cooling to the original temperature, the total volume of gas remaining wa 335 cm^3	IS
	When this gas mixture was passed through aqueous sodium hydroxide, the carbon dioxide reacted and the volume of gas decreased to 155 cm ³	
	Both gas volumes were measured at 25 °C and 105 kPa	
	Write an equation for the combustion of P in an excess of oxygen and calcula the mass, in mg, of P used.	te
	The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ [5 mark	s]
	Mass of P used mg	

	22	Do not write outside the box
1 0.4	Isomers R and S are shown.	
	$\begin{array}{c} O \\ \parallel \\ C \\ H_{3}C \\ C \\ H_{2} \\ C \\ H_{2} \\ C \\ H_{2} \\ C \\ H_{3} \\ C \\ H_{2} \\ C \\ H_{2} \\ C \\ H_{2} \\ C \\ H_{3} \\ C \\ H_{2} \\ C \\ H_{2} \\ C \\ H_{3} \\ C $	
	Although the ¹³ C spectra of R and S both show the same number of peaks, the spectra can be used to distinguish between the isomers.	
	Justify this statement using Table ${f C}$ from the Data Booklet.	
	Give the number of peaks for each isomer. [3 mark	s]
	Justification	
	Number of peaks	_

	23	Do not write outside the box	
1 0 . 5	Although the ¹ H spectra of R and S both show the same number of peaks, the spectra can be used to distinguish between the isomers.		
	Justify this statement using the splitting patterns of the peaks.		
	Give the number of peaks for each isomer. [3 mar	ks]	
	Justification		
	Number of peaks		
	Question 10 continues on the next page		

[3 marks]

Do not write outside the

box

Do not write

1

0.

		26		o not write Itside the box
1 1	This question is about the three amines, E , F and G .			
	NH ₂	CH ₂ CH ₂ NH ₂	NHCH ₂ CH ₃	
	E	F	G	
1 1 . 1	Amines E, F and G are	e weak bases.		
	Explain the difference of increasing base stre	in base strength of the three a ength.	mines and give the order [6 marks]	

1 1.2	Amine F can be prepared in a three-step synthesis starting from methylbenzene.		
	Suggest the structures of the two intermediate con	mpounds.	
	For each step, give reagents and conditions only.	Equations and mechanisms	
	are not required.	[5 marks]	
	END OF QUESTIONS		
		Turn over ►	

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

