

Insert

FIGURE 5 for use in answering Question 3.

FIGURE 6 for use in answering Question 5.

FIGURE 7 for use in answering Question 7.

FIGURE 11 for use in answering Question 11.

FIGURE 12 for use in answering Question 12.

TABLE 3 for use in answering Question 12.

TABLE 4 for use in answering Question 12.

[Turn over]

A-level

COMPUTER SCIENCE
Paper 2

7517/2

A

www.xtrapapers.com

FIGURE 5

A

B

C

D

E

F

H

G

2

FIGURE 6

External
Router

Internet

Switch B

SUBNET Y

SUBNET X

SUBNET Z

186.12.19.76

Router 1

Router 2

Server

Switch A

Web
Server

DHCP Server

[Turn over]

3

FIGURE 7

Athlete(AthleteID, Surname, Forename, DateOfBirth, Gender, TeamName)

EventType(EventTypeID, Gender, Distance, AgeGroup)

Fixture(FixtureID, FixtureDate, LocationName)

EventAtFixture(FixtureID, EventTypeID)

EventEntry(FixtureID, EventTypeID, AthleteID)

• Each Athlete, EventType and Fixture is identified by a unique identity number,

for example AthleteID for athletes.
• An EventType is a type of event, such as Boys’ 100m Under 15 race.
• If an athlete wants to take part in an event at a particular fixture, then an entry

is created in the EventEntry relation to represent this.

4

FIGURE 11

[Turn over]

5

6

FIGURE 12

IF characterCode >= 65 AND characterCode
<= 90 THEN
 encryptedCode  characterCode +
keyValue
 IF encryptedCode > 90 THEN
 encryptedCode  encryptedCode – 26
 ENDIF
ELSE
 encryptedCode  characterCode
ENDIF

www.xtrapapers.com

7

TABLE 3

A 65 N 78

B 66 O 79

C 67 P 80

D 68 Q 81

E 69 R 82

F 70 S 83

G 71 T 84

H 72 U 85

I 73 V 86

J 74 W 87

K 75 X 88

L 76 Y 89

M 77 Z 90

[Turn over]

www.xtrapapers.com

TABLE 4 Standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location
 specified by <memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the
memory location specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the
value in register n and store the result in register
d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from
the value in register n and store the result in
register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into
register d.

CMP Rn, <operand2> Compare the value stored in register n with the
value specified by <operand2>.

B <label> Always branch to the instruction at position
<label> in the program.

8

B<condition> <label> Branch to the instruction at position <label> if
the
last comparison met the criterion specified by
<condition>. Possible values for <condition>
 and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between
the value in register n and the value specified by
<operand2> and store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between
the value in register n and the value specified by
<operand2> and store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or)
operation between the value in register n and the
value specified by <operand2> and store the
result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the
value specified by <operand2> and store the
result in register d.

[Turn over]

9

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n
by
the number of bits specified by <operand2> and
store the result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n
by the number of bits specified by <operand2>
and store the result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by
a colon (:). To refer to a label, the identifier of the label is placed after the branch
instruction.

10

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first
character is a # or an R:

• # – use the decimal value specified after the #, eg #25 means use the decimal
value 25.

• Rm – use the value stored in register m, eg R6 means use the value stored in
register 6.

The available general purpose registers that the programmer can use are numbered
0 to 12.

END OF SOURCES

11

12

There are no sources printed on this page

Copyright information

For confidentiality purposes, from the November 2015 examination series,
acknowledgements of third party copyright material will be published in a separate booklet
rather than including them on the examination paper or support materials. This booklet is
published after each examination series and is available for free download from
www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts
to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify
any omissions of acknowledgements. If you have any queries please contact the Copyright
Team, AQA, Stag Hill House, Guildford, GU2 7XJ

Copyright © 2018 AQA and its licensors. All rights reserved.

IB/M/Jun18/LO/7517/2/INS/E2

www.xtrapapers.com

