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FIGURE  5 for use in answering Question 3.  
 
FIGURE  6 for use in answering Question 5.  
 
FIGURE  7 for use in answering Question 7. 
 
FIGURE  11 for use in answering Question 11. 
 
FIGURE  12 for use in answering Question 12.  
 
TABLE  3 for use in answering Question 12. 
 
TABLE  4  for use in answering Question 12. 
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FIGURE  5  
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FIGURE  7  
   
Athlete(AthleteID, Surname, Forename, DateOfBirth, Gender, TeamName) 

EventType(EventTypeID, Gender, Distance, AgeGroup) 

Fixture(FixtureID, FixtureDate, LocationName) 

EventAtFixture(FixtureID, EventTypeID) 

EventEntry(FixtureID, EventTypeID, AthleteID) 
 
• Each Athlete, EventType and Fixture is identified by a unique identity number, 

for example AthleteID for athletes. 
• An EventType is a type of event, such as Boys’ 100m Under 15 race. 
• If an athlete wants to take part in an event at a particular fixture, then an entry 

is created in the EventEntry relation to represent this. 
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FIGURE  11
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FIGURE  12 
 
IF characterCode >= 65 AND characterCode 
<= 90 THEN 
  encryptedCode  characterCode + 
keyValue 
  IF encryptedCode > 90 THEN 
    encryptedCode  encryptedCode – 26 
  ENDIF 
ELSE 
  encryptedCode  characterCode 
ENDIF 
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TABLE  3 
 

A 65  N 78 

B 66  O 79 

C 67  P 80 

D 68  Q 81 

E 69  R 82 

F 70  S 83 

G 71  T 84 

H 72  U 85 

I 73  V 86 

J 74  W 87 

K 75  X 88 

L 76  Y 89 

M 77  Z 90 
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TABLE  4  Standard AQA assembly language instruction set 
 

LDR Rd, <memory ref> Load the value stored in the memory location 
 specified by <memory ref> into register d. 

STR Rd, <memory ref> Store the value that is in register d into the 
memory location specified by <memory ref>. 

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the 
value in register n and store the result in register 
d. 

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from 
the value in register n and store the result in  
register d. 

MOV Rd, <operand2> Copy the value specified by <operand2> into 
register d. 

CMP Rn, <operand2> Compare the value stored in register n with the  
value specified by <operand2>. 

B <label> Always branch to the instruction at position 
<label> in the program. 
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B<condition> <label> Branch to the instruction at position <label> if 
the 
last comparison met the criterion specified by 
<condition>.  Possible values for <condition> 
 and their meanings are: 

EQ: equal to          NE: not equal to 
GT: greater than  LT: less than 

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between 
the value in register n and the value specified by 
<operand2> and store the result in register d. 

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between 
the value in register n and the value specified by 
<operand2> and store the result in register d. 

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or)  
operation between the value in register n and the 
value specified by <operand2> and store the 
result in register d. 

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the  
value specified by <operand2> and store the  
result in register d. 
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LSL Rd, Rn, <operand2> Logically shift left the value stored in register n 
by 
the number of bits specified by <operand2> and  
store the result in register d. 

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n 
by the number of bits specified by <operand2> 
and store the result in register d. 

HALT Stops the execution of the program. 
 

 

 
Labels:  A label is placed in the code by writing an identifier followed by  
a colon (:).  To refer to a label, the identifier of the label is placed after the branch 
instruction.  
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Interpretation of <operand2> 
 

<operand2> can be interpreted in two different ways, depending on whether the first 
character is a # or an R: 
 

• # – use the decimal value specified after the #, eg #25 means use the decimal 
value 25. 

• Rm – use the value stored in register m, eg R6 means use the value stored in 
register 6. 

 
The available general purpose registers that the programmer can use are numbered 
0 to 12. 

 
 

END  OF  SOURCES
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