A-level Physics data and formulae

For use in exams from the June 2017 Series onwards

DATA - FUNDAMENTAL CONSTANTS AND VALUES

Quantity	Symbol	Value	Units
speed of light in vacuo	c	3.00×10^{8}	$\mathrm{m} \mathrm{s}^{-1}$
permeability of free space	μ_{0}	$4 \pi \times 10^{-7}$	Hm^{-1}
permittivity of free space	ε_{0}	8.85×10^{-12}	F m ${ }^{-1}$
magnitude of the charge of electron	e	1.60×10^{-19}	C
the Planck constant	h	6.63×10^{-34}	J s
gravitational constant	G	6.67×10^{-11}	$\mathrm{N} \mathrm{m}^{2} \mathrm{~kg}^{-2}$
the Avogadro constant	$N_{\text {A }}$	6.02×10^{23}	mol^{-1}
molar gas constant	R	8.31	$\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
the Boltzmann constant	k	1.38×10^{-23}	J^{-1}
the Stefan constant	σ	5.67×10^{-8}	$\mathrm{W} \mathrm{m}^{-2} \mathrm{~K}^{-4}$
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass (equivalent to $5.5 \times 10^{-4} \mathrm{u}$)	$m_{\text {e }}$	9.11×10^{-31}	kg
electron charge/mass ratio	$\frac{e}{m_{\mathrm{e}}}$	1.76×10^{11}	$\mathrm{C} \mathrm{kg}{ }^{-1}$
proton rest mass (equivalent to 1.00728 u)	m_{p}	$1.67(3) \times 10^{-27}$	kg
proton charge/mass ratio	$\frac{e}{m_{\mathrm{p}}}$	9.58×10^{7}	C kg ${ }^{-1}$
neutron rest mass (equivalent to 1.00867 u)	m_{n}	$1.67(5) \times 10^{-27}$	kg
gravitational field strength	g	9.81	$\mathrm{N} \mathrm{kg}^{-1}$
acceleration due to gravity	g	9.81	$\mathrm{m} \mathrm{s}^{-2}$
atomic mass unit (1 u is equivalent to 931.5 MeV)	u	1.661×10^{-27}	kg

ALGEBRAIC EQUATION
 quadratic equation $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

	ASTRONOMICAL DATA	
Body	Mass $/ \mathrm{kg}$	Mean radius $/ \mathrm{m}$
Sun	1.99×10^{30}	6.96×10^{8}
Earth	5.97×10^{24}	6.37×10^{6}

GEOMETRICAL EQUATIONS

arc length	$=r \theta$
circumference of circle	$=2 \pi r$
area of circle	$=\pi r^{2}$
curved surface area of cylinder	$=2 \pi r h$
area of sphere	$=4 \pi r^{2}$
volume of sphere	$=\frac{4}{3} \pi r^{3}$

Particle Physics

Class	Name	Symbol	Rest energy/MeV
photon	photon	γ	0
lepton	neutrino	v_{e}	0
		v_{μ}	0
	electron	$e^{ \pm}$	0.510999
	muon	$\mu^{ \pm}$	105.659
mesons	π meson	$\pi^{ \pm}$	139.576
		π^{0}	134.972
	K meson	$\mathrm{K}^{ \pm}$	493.821
		$\mathrm{~K}^{0}$	497.762
baryons	proton	p	938.257
	neutron	n	939.551

Properties of quarks

antiquarks have opposite signs

Type	Charge	Baryon number	Strangeness
\mathbf{u}	$+\frac{2}{3} e$	$+\frac{1}{3}$	0
\mathbf{d}	$-\frac{1}{3} e$	$+\frac{1}{3}$	0
\mathbf{s}	$-\frac{1}{3} e$	$+\frac{1}{3}$	-1

Properties of Leptons

	Lepton number	
Particles:	$\mathrm{e}^{-}, \nu_{\mathrm{e}} ; \mu^{-}, v_{\mu}$	+1
Antiparticles:	$\mathrm{e}^{+}, \overline{\nu_{\mathrm{e}}}, \mu^{+}, \overline{\nu_{\mu}}$	-1

Photons and energy levels
photon energy

$$
\begin{aligned}
E & =h f=\frac{h c}{\lambda} \\
h f & =\phi+E_{\mathrm{k}(\max)} \\
h f & =E_{1}-E_{2} \\
\lambda & =\frac{h}{p}=\frac{h}{m v}
\end{aligned}
$$

photoelectricity
energy levels
de Broglie wavelength

Waves

wave speed $\quad c=f \lambda \quad$ period $\quad f=\frac{1}{T}$
$\begin{aligned} & \text { first } \\ & \text { harmonic }\end{aligned} \quad f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}$
$\begin{aligned} & \text { fringe } \\ & \text { spacing }\end{aligned} \quad w=\frac{\lambda D}{s} \quad \begin{aligned} & \text { diffraction } \\ & \text { grating }\end{aligned} \quad d \sin \theta=n \lambda$ refractive index of a substance s, $n=\frac{c}{c_{s}}$
for two different substances of refractive indices n_{1} and n_{2}, law of refraction $\quad n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
critical angle $\sin \theta_{c}=\frac{n_{2}}{n_{1}}$ for $n_{1}>n_{2}$

Mechanics

moments \quad moment $=F d$
velocity and acceleration

$$
\begin{array}{ll}
v=\frac{\Delta s}{\Delta t} & a=\frac{\Delta v}{\Delta t} \\
v=u+a t & s=\left(\frac{u+v}{2}\right) t \\
v^{2}=u^{2}+2 a s & s=u t+\frac{a t^{2}}{2}
\end{array}
$$

equations of motion
force
$F=m a$
force
$F=\frac{\Delta(m v)}{\Delta t}$
impulse
$F \Delta t=\Delta(m v)$
work, energy $W=F s \cos \theta$

$$
E_{\mathrm{k}}=\frac{1}{2} m v^{2} \quad \Delta E_{\mathrm{p}}=m g \Delta h
$$

$P=\frac{\Delta W}{\Delta t}, P=F v$
efficiency $=\frac{\text { useful output power }}{\text { input power }}$

Materials

density $\rho=\frac{m}{V} \quad$ Hooke's law $F=k \Delta L$
Young modulus $=\frac{\text { tensile stress }}{\text { tensile strain }} \quad \begin{aligned} & \text { tensile stress }=\frac{F}{A} \\ & \\ & \text { tensile strain }=\frac{\Delta L}{L}\end{aligned}$
energy stored $\quad E=\frac{1}{2} F \Delta L$

Electricity

$$
\begin{array}{ll}
\text { current and } p d & I=\frac{\Delta Q}{\Delta t} \quad V=\frac{W}{Q} \quad R=\frac{V}{I} \\
\text { resistivity } & \rho=\frac{R A}{L} \\
\text { resistors in series } & R_{\mathrm{T}}=R_{1}+R_{2}+R_{3}+\ldots \\
\text { resistors in parallel } & \frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots \\
\text { power } & P=V I=I^{2} R=\frac{V^{2}}{R} \\
\text { emf } & \varepsilon=\frac{E}{Q} \quad \varepsilon=I(R+r)
\end{array}
$$

Circular motion

$$
\begin{array}{ll}
\begin{array}{c}
\text { magnitude of } \\
\text { angular speed }
\end{array} & \omega=\frac{v}{r} \\
& \omega=2 \pi f
\end{array}
$$

centripetal acceleration

Thermal physics

energy to change
temperature
energy to change
state

$$
Q=m c \Delta \theta
$$

$$
Q=m l
$$

gas law

$$
p V=n R T
$$

$$
p V=N k T
$$

kinetic theory model

$$
p V=\frac{1}{3} N m\left(c_{\mathrm{rms}}\right)^{2}
$$

$\begin{aligned} & \begin{array}{l}\text { kinetic energy of gas } \\ \text { molecule }\end{array}\end{aligned} \frac{1}{2} m\left(c_{\mathrm{rms}}\right)^{2}=\frac{3}{2} k T=\frac{3 R T}{2 N_{\mathrm{A}}}$

Electric fields and capacitors

force between two point charges

$$
F=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2}}{r^{2}}
$$

force on a charge

$$
F=E Q
$$

$$
a=\frac{v^{2}}{r}=\omega^{2} r
$$

Simple harmonic motion

field strength for a uniform field
work done
$E=\frac{V}{d}$
$\Delta W=Q \Delta V$

$$
\text { centripetal force } \quad F=\frac{m v^{2}}{r}=m \omega^{2} r
$$

acceleration	$a=-\omega^{2} x$
displacement	$x=A \cos (\omega t)$
speed	$v= \pm \omega \sqrt{\left(A^{2}-x^{2}\right)}$
maximum speed	$v_{\max }=\omega A$
maximum acceleration	$a_{\max }=\omega^{2} A$
for a mass-spring system	$T=2 \pi \sqrt{\frac{m}{k}}$
for a simple pendulum	$T=2 \pi \sqrt{\frac{l}{g}}$

Gravitational fields

force between two masses

$$
F=\frac{G m_{1} m_{2}}{r^{2}}
$$

gravitational field strength
$g=\frac{F}{m}$
magnitude of gravitational field strength in a radial field
work done
gravitational potential
$g=\frac{G M}{r^{2}}$
$\Delta W=m \Delta V$
$V=-\frac{G M}{r}$
$g=-\frac{\Delta V}{\Delta r}$
field strength for a
radial field
$E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}}$
electric potential
field strength

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}
$$

capacitance
$E=\frac{\Delta V}{\Delta r}$
$C=\frac{Q}{V}$

$$
C=\frac{A \varepsilon_{0} \varepsilon_{\mathrm{r}}}{d}
$$

capacitor energy stored
$E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}$
capacitor charging
$Q=Q_{0}\left(1-\mathrm{e}^{\left.-\frac{t}{R C}\right)}\right.$
decay of charge
$Q=Q_{0} \mathrm{e}^{-\frac{t}{R C}}$
time constant
RC

Magnetic fields
force on a current
force on a moving charge
magnetic flux
magnetic flux linkage
magnitude of induced emf
emf induced in a rotating coil
$F=B I l$
$F=B Q v$

$$
\Phi=B A
$$

$$
N \Phi=B A N \cos \theta
$$

$$
\varepsilon=N \frac{\Delta \Phi}{\Delta t}
$$

$$
N \Phi=B A N \cos \theta
$$

$\varepsilon=B A N \omega \sin \omega t$
alternating current $\quad I_{\mathrm{rms}}=\frac{I_{0}}{\sqrt{2}} \quad V_{\mathrm{rms}}=\frac{V_{0}}{\sqrt{2}}$
transformer equations

$$
\begin{aligned}
& \frac{N_{\mathrm{s}}}{N_{\mathrm{p}}}=\frac{V_{\mathrm{s}}}{V_{\mathrm{p}}} \\
& \text { efficiency }=\frac{I_{\mathrm{s}} V_{\mathrm{s}}}{I_{\mathrm{p}} V_{\mathrm{p}}}
\end{aligned}
$$

Nuclear physics

inverse square law for γ radiation

$$
I=\frac{k}{x^{2}}
$$

radioactive decay
activity
$\frac{\Delta N}{\Delta t}=-\lambda N, N=N_{\mathrm{o}} \mathrm{e}^{-\lambda t}$
$A=\lambda N$
half-life

$$
T_{1 / 2}=\frac{\ln 2}{\lambda}
$$

nuclear radius
energy-mass equation

OPTIONS

Astrophysics

$$
\begin{aligned}
& 1 \text { astronomical unit }=1.50 \times 10^{11} \mathrm{~m} \\
& 1 \text { light year }=9.46 \times 10^{15} \mathrm{~m} \\
& 1 \text { parsec }=2.06 \times 10^{5} \mathrm{AU}=3.08 \times 10^{16} \mathrm{~m} \\
& =3.26 \mathrm{ly}
\end{aligned}
$$

Hubble constant, $H=65 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$
$M=\frac{\text { angle subtended by image at eye }}{\text { angle subtended by object at unaided eye }}$
telescope in normal
adjustment
Rayleigh criterion
magnitude equation
Wien's law
Stefan's law
Schwarzschild radius $\quad R_{\mathrm{s}} \approx \frac{2 G M}{c^{2}}$
Doppler shift for $v \ll c \quad \frac{\Delta f}{f}=-\frac{\Delta \lambda}{\lambda}=\frac{v}{c}$
red shift
$z=-\frac{v}{c}$
Hubble's law
$v=H d$

Medical physics
lens equations
$P=\frac{1}{f}$
$m=\frac{v}{u}$
$\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$
threshold of hearing $\quad I_{0}=1.0 \times 10^{-12} \mathrm{~W} \mathrm{~m}^{-2}$
intensity level intensitylevel $=10 \log \frac{I}{I_{0}}$
absorption
$I=I_{0} e^{-\mu x}$
$\mu_{\mathrm{m}}=\frac{\mu}{\rho}$
ultrasound imaging
half-lives

$$
\frac{I_{\mathrm{r}}}{I_{\mathrm{i}}}=\left(\frac{z_{2}-Z_{1}}{z_{2}+z_{1}}\right)^{2}
$$

$$
\frac{1}{T_{\mathrm{E}}}=\frac{1}{T_{\mathrm{B}}}+\frac{1}{T_{\mathrm{P}}}
$$

Engineering physics

moment of inertia	$I=\Sigma m r^{2}$
angular kinetic energy	$E_{k}=\frac{1}{2} I \omega^{2}$
equations of angular motion	$\omega_{2}=\omega_{1}+\alpha t$
	$\omega_{2}{ }^{2}=\omega_{1}{ }^{2}+2 \alpha \theta$
	$\theta=\omega_{1} t+\frac{\alpha t^{2}}{2}$
θ	$=\frac{\left(\omega_{1}+\omega_{2}\right) t}{2}$
torque	$T=I \alpha$
	$T=F r$

angular momentum angular momentum $=I \omega$
angular impulse
work done
power
$T \Delta t=\Delta(I \omega)$
thermodynamics
adiabatic change
isothermal change
heat engines

$$
\text { efficiency }=\frac{W}{Q_{\mathrm{H}}}=\frac{Q_{\mathrm{H}}-Q_{\mathrm{C}}}{Q_{\mathrm{H}}}
$$

maximum theoretical
efficiency $=$$\frac{T_{\mathrm{H}}-T_{\mathrm{C}}}{T_{\mathrm{H}}}$
work done per cycle $=$ area of loop
input power $=$ calorific value \times fuel flow rate

$$
\begin{aligned}
\text { indicated power }= & (\text { area of } p-V \text { loop }) \\
& \times(\text { number of cycles per second }) \\
& \times(\text { number of cylinders })
\end{aligned}
$$

output or brake power $P=T \omega$
friction power $=$ indicated power - brake power
heat pumps and refrigerators
refrigerator: $C O P_{\mathrm{ref}}=\frac{Q_{\mathrm{C}}}{W}=\frac{Q_{\mathrm{C}}}{Q_{\mathrm{H}}-Q_{\mathrm{C}}}$
heat pump: $\operatorname{COP}_{\mathrm{hp}}=\frac{Q_{\mathrm{H}}}{W}=\frac{Q_{\mathrm{H}}}{Q_{\mathrm{H}}-Q_{\mathrm{C}}}$

Turning points in physics

electrons in fields

$$
\begin{aligned}
& F=\frac{e V}{d} \\
& F=B e v \\
& r=\frac{m v}{B e} \\
& 1 / 2 m v^{2}=e V
\end{aligned}
$$

Millikan's experiment
$\frac{Q V}{d}=m g$
$F=6 \pi \eta r v$

Maxwell's formula

$$
c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}
$$

$$
\lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m e V}}
$$

special relativity

$$
t=\frac{t_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

$$
l=l_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}
$$

$$
E=m c^{2}=\frac{m_{0} c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Electronics

$$
\begin{array}{ll}
\text { resonant frequency } & f_{0}=\frac{1}{2 \pi \sqrt{L C}} \\
\text { Q-factor } & Q=\frac{f_{0}}{f_{\mathrm{B}}}
\end{array}
$$

operational amplifiers:
open loop
inverting amplifier

$$
V_{\text {out }}=A_{\mathrm{OL}}\left(V_{+}-V_{-}\right)
$$

$$
\frac{V_{\mathrm{out}}}{V_{\mathrm{in}}}=-\frac{R_{\mathrm{f}}}{R_{\mathrm{in}}}
$$

non-inverting amplifier
summing amplifier
difference amplifier

$$
\begin{aligned}
& V_{\text {out }}=-R_{\mathrm{f}}\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}+\cdots\right) \\
& V_{\text {out }}=\left(V_{+}-V_{-}\right) \frac{R_{\mathrm{f}}}{R_{\mathrm{l}}}
\end{aligned}
$$

Bandwidth requirement:
for $A M$
for FM
bandwidth $=2 f_{\mathrm{M}}$
bandwidth $=2\left(\Delta f+f_{\mathrm{M}}\right)$

