AQAE

A-level

Physics data and formulae

For use in exams from the June 2017 Series onwards
[Turn over]

DATA - FUNDAMENTAL CONSTANTS AND VALUES

Quantity
speed of light in vacuo
permeability of free space
permittivity of free space
magnitude of the
charge of electron
the Planck constant
gravitational
constant
the Avogadro
constant
molar gas
constant
the Boltzmann
constant
the Stefan
constant
the Wien constant
electron rest mass (equivalent to
$5.5 \times 10^{-4} \mathrm{u}$)

Symbol
c $\quad 3.00 \times 10^{8}$
$\mathrm{m} \mathrm{s}^{\mathbf{- 1}}$
μ_{0} $4 \pi \times 10^{-7}$
H^{-1}
$\varepsilon_{0} \quad 8.85 \times \mathbf{1 0}^{\mathbf{- 1 2}} \quad \mathrm{F} \mathrm{m}^{\mathbf{- 1}}$
e $\quad 1.60 \times 10^{-19}$
C
$h \quad 6.63 \times 10^{-34}$
J s

G
$6.67 \times 10^{-11} \quad \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
$N_{\text {A }}$
6.02×10^{23}
mol $^{-1}$
R
8.31
$\mathbf{J ~ K}^{\mathbf{- 1}} \mathbf{~ m o l}^{-1}$
$k \quad 1.38 \times 10^{-23}$
$\mathbf{J K}^{\mathbf{- 1}}$
$\sigma \quad 5.67 \times 10^{-8} \quad \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
α
2.90×10^{-3}
m K
$m_{\mathbf{e}}$
9.11×10^{-31}
kg
electron $\quad e$
charge/mass ratio $\quad \overline{m_{e}}$
proton rest mass
(equivalent to
1.00728 u)
proton
charge/mass ratio
neutron rest mass (equivalent to
1.00867 u)
gravitational field
strength
acceleration due to
gravity
atomic mass unit
(1 u is equivalent to 931.5 MeV)
[Turn over]

ALGEBRAIC EQUATION

quadratic equation $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

ASTRONOMICAL DATA

Body	Mass $/ \mathrm{kg}$	Mean radius $/ \mathrm{m}$
Sun	$1.99 \times \mathbf{1 0}^{\mathbf{3 0}}$	$6.96 \times \mathbf{1 0}^{8}$
Earth	$\mathbf{5 . 9 7} \times \mathbf{1 0}^{\mathbf{2 4}}$	$6.37 \times \mathbf{1 0}^{6}$

GEOMETRICAL EQUATIONS

arc length $=r \theta$
circumference of circle
$=2 \pi r$
area of circle
$=\pi r^{2}$
curved surface area of cylinder $=2 \pi r h$
area of sphere
$=4 \pi r^{2}$
volume of sphere
$=\frac{4}{3} \pi r^{3}$

PARTICLE PHYSICS

Class	Name	Symbol	Rest energy/MeV
photon	photon	γ	0
lepton	neutrino	v_{e}	0
		v_{μ}	0
	electron	$e^{ \pm}$	0.510999
	muon	$\mu^{ \pm}$	105.659
mesons	π meson	$\pi^{ \pm}$	139.576
		π^{0}	134.972
	K meson	$\mathbf{K}^{ \pm}$	493.821
		\mathbf{K}^{0}	497.762
baryons	proton	\mathbf{p}	938.257
	neutron	\mathbf{n}	939.551

[Turn over]

PROPERTIES OF QUARKS

antiquarks have opposite signs

Type	Charge	Baryon number	Strangeness
u	$+\frac{2}{3} e$	$+\frac{1}{3}$	0
d	$-\frac{1}{3} e$	$+\frac{1}{3}$	0
s	$-\frac{1}{3} e$	$+\frac{1}{3}$	-1

PROPERTIES OF LEPTONS

		Lepton number
Particles:	$\mathrm{e}^{-}, v_{\mathrm{e}} ; \mu^{-}, v_{\mu}$	+1
Antiparticles:	$\mathrm{e}^{+}, \overline{v_{\mathrm{e}}}, \mu^{+}, \overline{v_{\mu}}$	-1

PHOTONS AND ENERGY LEVELS

photon energy

$$
\begin{aligned}
& E=\boldsymbol{h f}=\frac{\boldsymbol{h} \boldsymbol{c}}{\lambda} \\
& \boldsymbol{h f}=\phi+E_{\mathrm{k}(\max)} \\
& \boldsymbol{h f}=E_{1}-E_{2} \\
& \lambda=\frac{h}{\boldsymbol{p}}=\frac{\boldsymbol{h}}{\boldsymbol{m} v}
\end{aligned}
$$

photoelectricity
energy levels
de Broglie wavelength
[Turn over]

WAVES

wave speed

$$
c=f \lambda \quad \text { period }
$$

$$
f=\frac{1}{T}
$$

first
harmonic

$$
f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}
$$

fringe spacing

$$
w=\frac{\lambda D}{s} \quad \begin{array}{ll}
\text { diffraction } \\
\text { grating }
\end{array}
$$

$$
d \sin \theta=n \lambda
$$

refractive index of a substance s, $n=\frac{c}{c_{s}}$
for two different substances of refractive indices \boldsymbol{n}_{1} and \boldsymbol{n}_{2}, law of refraction $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
critical angle $\sin \theta_{c}=\frac{n_{2}}{n_{1}}$ for $n_{1}>n_{2}$

MECHANICS

moments \quad moment $=\boldsymbol{F d}$
velocity and acceleration

$$
v=\frac{\Delta s}{\Delta t}
$$

$$
a=\frac{\Delta v}{\Delta t}
$$

equations of motion

$$
v=u+a t
$$

$$
s=\left(\frac{u+v}{2}\right) t
$$

$v^{2}=u^{2}+2 a s$
$s=u t+\frac{a t^{2}}{2}$
force
force
impulse
work, energy
$\boldsymbol{W}=\boldsymbol{F} \boldsymbol{s} \cos \boldsymbol{\theta}$
and power

$$
\begin{aligned}
& E_{\mathrm{k}}=\frac{1}{2} m v^{2} \quad \Delta E_{p}=m g \Delta h \\
& P=\frac{\Delta W}{\Delta t}, P=F v \\
& \text { efficiency }=\frac{\text { useful output power }}{\text { input power }}
\end{aligned}
$$

MATERIALS

density $\rho=\frac{m}{v}$
Hooke's law $F=k \Delta L$

Young modulus $=\frac{\text { tensile stress }}{\text { tensile strain }}$
tensile stress $=\frac{F}{\boldsymbol{A}}$
tensile strain $=\frac{\Delta L}{L}$
energy stored $E=\frac{1}{2} F \Delta L$

ELECTRICITY

current and pd $\quad I=\frac{\Delta Q}{\Delta t} \quad V=\frac{W}{Q} \quad R=\frac{V}{I}$
resistivity

$$
\rho=\frac{R A}{L}
$$

resistors in series

$$
R_{T}=R_{1}+R_{2}+R_{3}+\ldots
$$

resistors in parallel

$$
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
$$

power

$$
P=V I=I^{2} R=\frac{V^{2}}{R}
$$

emf

$$
\varepsilon=\frac{E}{Q} \quad \varepsilon=I(R+r)
$$

CIRCULAR MOTION

magnitude of angular speed

$$
\omega=\frac{v}{r}
$$

$$
\omega=2 \pi f
$$

centripetal
acceleration

$$
\begin{aligned}
a & =\frac{v^{2}}{r}=\omega^{2} r \\
F & =\frac{m v^{2}}{r}=m \omega^{2} r
\end{aligned}
$$

centripetal
force

SIMPLE HARMONIC MOTION

acceleration
displacement
speed
maximum speed
maximum acceleration
for a mass-spring system $\quad T=2 \pi \sqrt{\frac{m}{k}}$
for a simple pendulum $\quad T=2 \pi \sqrt{\frac{l}{g}}$
[Turn over]

THERMAL PHYSICS

energy to change temperature

$$
Q=m c \Delta \theta
$$

energy to change
state

$$
Q=m l
$$

gas law
$p V=n R T$
$p V=N k T$
kinetic theory
model

$$
p V=\frac{1}{3} N m\left(c_{\mathrm{rms}}\right)^{2}
$$

kinetic energy of gas molecule

$$
\frac{1}{2} m\left(c_{\mathrm{rms}}\right)^{2}=\frac{3}{2} k T=\frac{3 R T}{2 N_{\mathrm{A}}}
$$

GRAVITATIONAL FIELDS

force between two masses

$$
F=\frac{G m_{1} m_{2}}{r^{2}}
$$

gravitational field strength

$$
g=\frac{F}{m}
$$

magnitude of
$\begin{aligned} & \text { gravitational field } \\ & \text { strength in a radial }\end{aligned} \quad g=\frac{G M}{r^{2}}$
field
work done

$$
\Delta W=m \Delta V
$$

gravitational potential

$$
V=-\frac{G M}{r}
$$

$$
g=-\frac{\Delta V}{\Delta r}
$$

ELECTRIC FIELDS AND CAPACITORS

force between
two point
charges
$F=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{r^{2}}$
force on a charge $F=E Q$
field strength for a uniform field
$E=\frac{V}{d}$
work done
$\Delta W=Q \Delta V$
field strength for a radial field

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}}
$$

electric potential

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}
$$

field strength $\quad E=\frac{\Delta V}{\Delta r}$
capacitance

$$
\begin{aligned}
& C=\frac{Q}{V} \\
& C=\frac{A \varepsilon_{0} \varepsilon_{\mathrm{r}}}{d}
\end{aligned}
$$

capacitor energy stored

$$
E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}
$$

[Turn over]
capacitor
charging

$$
Q=Q_{0}\left(1-\mathrm{e}^{-\frac{t}{R C}}\right)
$$

decay of charge $\quad Q=Q_{0} \mathrm{e}^{-\frac{t}{R C}}$
time constant $\quad R C$

MAGNETIC FIELDS

force on a

current

$$
F=B I l
$$

force on a
moving charge

$$
F=B Q v
$$

magnetic flux

$$
\Phi=B A
$$

magnetic flux
linkage

$$
N \Phi=B A N \cos \theta
$$

magnitude of induced emf

$$
\varepsilon=N \frac{\Delta \Phi}{\Delta t}
$$

$$
N \Phi=B A N \cos \theta
$$

emf induced in a rotating coil

$$
\varepsilon=B A N \omega \sin \omega t
$$

alternating
current

$$
I_{\mathrm{rms}}=\frac{I_{0}}{\sqrt{2}} \quad V_{\mathrm{rms}}=\frac{V_{0}}{\sqrt{2}}
$$

transformer equations
$\frac{N_{\mathbf{S}}}{N_{\mathrm{p}}}=\frac{V_{\mathbf{S}}}{V_{\mathrm{p}}}$
efficiency $=\frac{I_{\mathrm{s}} V_{\mathrm{s}}}{I_{\mathrm{p}} V_{\mathrm{p}}}$

NUCLEAR PHYSICS

inverse square law
for γ radiation

$$
I=\frac{k}{x^{2}}
$$

radioactive decay $\frac{\Delta N}{\Delta t}=-\lambda N, N=N_{0} \mathrm{e}^{-\lambda t}$
activity
$A=\lambda N$
half-life

$$
T_{1 / 2}=\frac{\ln 2}{\lambda}
$$

nuclear radius

$$
R=R_{0} A^{1 / 3}
$$

energy-mass equation

$$
E=m c^{2}
$$

[Turn over]

OPTIONS

ASTROPHYSICS

1 astronomical unit $=1.50 \times 10^{11} \mathrm{~m}$
1 light year $=9.46 \times 10^{15} \mathrm{~m}$
1 parsec $=2.06 \times 10^{5} \mathrm{AU}=3.08 \times 10^{16} \mathrm{~m}=3.26 \mathrm{ly}$
Hubble constant, $H=65 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$
$M=\quad$ angle subtended by image at eye angle subtended by object at unaided eye
telescope in normal adjustment

$$
M=\frac{f_{0}}{f_{\mathrm{e}}}
$$

Rayleigh criterion

$$
\theta \approx \frac{\lambda}{D}
$$

magnitude equation $\quad m-M=5 \log \frac{d}{10}$
Wien's law

$$
\lambda_{\text {max }} T=2.9 \times 10^{-3} \mathrm{~m} \mathrm{~K}
$$

Stefan's law

$$
P=\sigma A T^{4}
$$

Schwarzschild radius $R_{\mathrm{s}} \approx \frac{2 G M}{c^{2}}$

Doppler shift for $v \ll c \frac{\Delta f}{f}=-\frac{\Delta \lambda}{\lambda}=\frac{v}{c}$
red shift

$$
z=-\frac{v}{c}
$$

Hubble's law

$$
v=H d
$$

[Turn over]

MEDICAL PHYSICS

lens equations

$$
\begin{aligned}
P & =\frac{1}{f} \\
m & =\frac{v}{u}
\end{aligned}
$$

$$
\frac{1}{f}=\frac{1}{u}+\frac{1}{v}
$$

threshold of hearing $I_{0}=1.0 \times 10^{-12} \mathrm{~W} \mathrm{~m}^{-2}$
intensity level \quad intensity level $=10 \log \frac{I}{I_{0}}$
absorption

$$
\begin{aligned}
& I=I_{0} \mathrm{e}^{-\mu x} \\
& \mu_{\mathrm{m}}=\frac{\mu}{\rho}
\end{aligned}
$$

ultrasound imaging $Z=p c$

$$
\frac{I_{\mathrm{r}}}{I_{\mathrm{i}}}=\left(\frac{\mathrm{z}_{2}-\mathrm{z}_{1}}{\mathrm{z}_{2}+\mathrm{z}_{1}}\right)^{2}
$$

half-lives

$$
\frac{1}{T_{\mathrm{E}}}=\frac{1}{T_{\mathrm{B}}}+\frac{1}{T_{\mathrm{P}}}
$$

ENGINEERING PHYSICS

moment of inertia $I=\Sigma m r^{2}$
angular kinetic energy

$$
E_{\mathrm{k}}=\frac{1}{2} I \omega^{2}
$$

equations of angular motion

$$
\begin{aligned}
& \omega_{2}=\omega_{1}+\alpha t \\
& \omega_{2}^{2}=\omega_{1}^{2}+2 \alpha \theta
\end{aligned}
$$

$$
\theta=\omega_{1} t+\frac{\alpha t^{2}}{2}
$$

$$
\theta=\frac{\left(\omega_{1}+\omega_{2}\right) t}{2}
$$

torque

$$
T=I \alpha
$$

$$
T=F r
$$

angular
momentum
angular momentum $=I \omega$
angular impulse $\quad T \Delta t=\Delta(I \omega)$
work done
$W=\boldsymbol{T} \boldsymbol{\theta}$
power
$P=T \omega$
thermodynamics
$\boldsymbol{Q}=\Delta \boldsymbol{U}+\boldsymbol{W}$
$W=p \Delta V$
adiabatic change $\quad p V^{\gamma}=$ constant
isothermal
change
$p V=$ constant
[Turn over]
heat engines

$$
\text { efficiency }=\frac{W}{Q_{H}}=\frac{Q_{H}-Q_{\mathrm{C}}}{Q_{\mathrm{H}}}
$$

$\underset{\text { efficiency }}{\operatorname{maximum}} \frac{T_{\mathrm{H}}-T_{\mathrm{C}}}{T_{\mathrm{H}}}$
work done per cycle = area of loop
input power $=$ calorific value \times fuel flow rate
indicated power $=($ area of $p-V$ loop $)$
\times (number of cycles per second)
\times (number of cylinders)
output or brake power $\quad P=\boldsymbol{T} \boldsymbol{\omega}$
friction power = indicated power - brake power
heat pumps and refrigerators
refrigerator: $\operatorname{COP}_{\text {ref }}=\frac{Q_{\mathrm{C}}}{W}=\frac{Q_{\mathrm{C}}}{Q_{\mathrm{H}}-Q_{\mathrm{C}}}$
heat pump: $\operatorname{COP}_{\mathrm{hp}}=\frac{Q_{\mathrm{H}}}{W}=\frac{Q_{\mathrm{H}}}{Q_{\mathrm{H}}-Q_{\mathrm{C}}}$

TURNING POINTS IN PHYSICS

electrons in fields

$$
\begin{aligned}
& F=\frac{e V}{d} \\
& F=B e v \\
& r=\frac{m v}{B e} \\
& 1 / 2 \boldsymbol{m} v^{2}=e V
\end{aligned}
$$

Millikan's
experiment

$$
\frac{Q V}{d}=m g
$$

$$
F=6 \pi \eta r v
$$

Maxwell's formula $c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$

$$
\lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m e V}}
$$

[Turn over]
special relativity

$$
\begin{aligned}
& t=\frac{t_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& l=l_{0} \sqrt{1-\frac{v^{2}}{c^{2}}} \\
& E=m c^{2}=\frac{m_{0} c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{aligned}
$$

ELECTRONICS

resonant
frequency

$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

Q-factor

$$
Q=\frac{f_{\mathbf{0}}}{f_{\mathrm{B}}}
$$

operational amplifiers: open

$$
V_{\text {out }}=A_{\text {OL }}\left(V_{+}-V_{-}\right)
$$

loop
inverting amplifier $\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{\text {f }}}{R_{\text {in }}}$
$\begin{array}{ll}\underset{\text { amplifier }}{\text { non-inverting }}\end{array} \quad \frac{V_{\text {out }}}{V_{\text {in }}}=1+\frac{R_{\text {f }}}{R_{1}}$
summing amplifier

$$
V_{\text {out }}=-R_{\mathrm{f}}\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}+\ldots\right)
$$

difference amplifier

$$
V_{\text {out }}=\left(V_{+}-V_{-}\right) \frac{R_{f}}{R_{1}}
$$

Bandwidth requirement:
for $\mathrm{AM} \quad$ bandwidth $=\mathbf{2} f_{\mathrm{M}}$
for FM
bandwidth $=\mathbf{2}\left(\Delta f+f_{M}\right)$

END OF FORMULAE

There are no formulae printed on this page

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

