AQA

Surname

Other Names

Centre Number
Candidate Number
Candidate Signature
A-level
PHYSICS
Paper 3 Section B Astrophysics
7408/3BA
Thursday 14 June 2018 Morning
Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 50 minutes on this section.

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do NOT write on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 35 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

DO NOT TURN OVER UNTIL TOLD TO DO SO

SECTION B

Answer ALL questions in this section.

| 0 | 1 |
| :--- | :--- |\quad The Griffith Observatory in Los Angeles includes an astronomical refracting telescope (Griffith telescope) with an objective lens of diameter 305 mm and focal length 5.03 m

| 0 | 1 | .1 |
| :--- | :--- | :--- | for which the Griffith telescope has a minimum angular resolution of 1.8×10^{-6} rad [2 marks]

[Turn over]

| 0 | 1 | .2 |
| :--- | :--- | :--- | The Griffith telescope is used to observe two point objects which subtend an angle of $1.8 \times 10^{-6} \mathrm{rad}$ at the unaided eye.

The typical human eye has a minimum angular resolution of approximately $3.2 \times 10^{-4} \mathrm{rad}$

Calculate the focal length of the eyepiece lens so that an observer can just resolve the two objects when observing them through the Griffith telescope. [3 marks]

focal length $=$

[Turn over]

\section*{| 0 | 1. | 3 |
| :--- | :--- | :--- | diameter of $\mathbf{3 2 5}$ m}

It has been calculated that, in 2029, its distance of closest approach to the Earth's surface will be $3.0 \times 10^{4} \mathbf{~ k m}$

The Griffith telescope may be used to view Apophis using the eyepiece calculated in question 01.2

Deduce whether this telescope is suitable to obtain a detailed view of Apophis.
Support your answer with a calculation. [3 marks]

There are answer lines on page 11 on which to continue your answer

[Turn over]

BLANK PAGE

11

[Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">1</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Sketch, on the axes in FIGURE 1,</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 2 | 1 |
| :--- | :--- | :--- |
| Sketch, on the axes in FIGURE 1, | | |</table-markdown></div> the black-body radiation curve for a typical star. [2 marks]

FIGURE 1

intensity / arbitrary units

0
wavelength

| 0 | 2 | 2 |
| :--- | :--- | :--- | SI units involved, how the curve you have drawn can be used to determine the black-body temperature of the star. [3 marks]

\qquad

[Turn over]

14

BLANK PAGE

[Turn over]

| 0 | 2 | 3 |
| :--- | :--- | :--- | seen very close together in the constellation Cygnus. Early astronomers were unsure whether the two stars form a binary system, or simply appear in the same line of sight.

TABLE 1 shows some of the properties of the two stars.

TABLE 1

	Temperature $/ \mathrm{K}$	Radius $/$Apparent km	Apagnitude mag
61 Cygnus A	4500	4.7×10^{5}	5.2
61 Cygnus B	4100	4.1×10^{5}	6.1

Evaluate whether the data support the suggestion that the two stars form a binary system.

In your answer you should

- compare the two stars as seen by an observer on Earth
- support your evaluation with suitable calculations.
[6 marks]
[Turn over]

BLANK PAGE

$\stackrel{\rightharpoonup}{\infty}$
||III||||||||
\qquad
$\stackrel{\rightharpoonup}{0}$

[Turn over]

||l|l|l||
[Turn over]
||IIIIIIII||

| 0 | 2 |
| :--- | :--- | $\mathbf{4}$ What is the spectral class of 61 Cygnus A?

Tick (\checkmark) the correct box. [1 mark]

23

\section*{| 0 | 3 | 1 |
| :--- | :--- | :--- |
| 1 | Describe the links between | | galaxies, black holes and quasars. [2 marks]}

\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

24

| 0 | 3 | 2 |
| :--- | :--- | :--- | year, Markarian-231 is the closest known quasar to the Earth. The red shift z of Markarian-231 is $\mathbf{0 . 0 4 1 5}$

Use these data to estimate an age, in seconds, of the Universe. [4 marks]

25

age $=$

[Turn over]

26

0	3	3
A typical quasar is believed to		

Estimate, with reference to the inverse-square law, how much further the most distant visible quasar is likely to be compared to the most distant visible galaxy. [3 marks]

27
[Turn over]
9

0	4
Evidence to support the Big Bang	

| 0 | 4 | 1 |
| :--- | :--- | :--- | cosmological microwave background radiation and how its existence supports the Big Bang theory. [3 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

29

[Turn over]

0 4. 2 Explain how the relative

 abundance of hydrogen and helium supports the Big Bang theory. [3 marks]\qquad
\qquad

32

There are no questions printed on this page

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
TOTAL	

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

IB/M/Jun18/JW/7408/3BA/E2

