

Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature		

AS CHEMISTRY

Paper 1: Inorganic and Physical Chemistry

Friday 27 May 2016 Morning Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a calculator, which you are expected to use where appropriate.

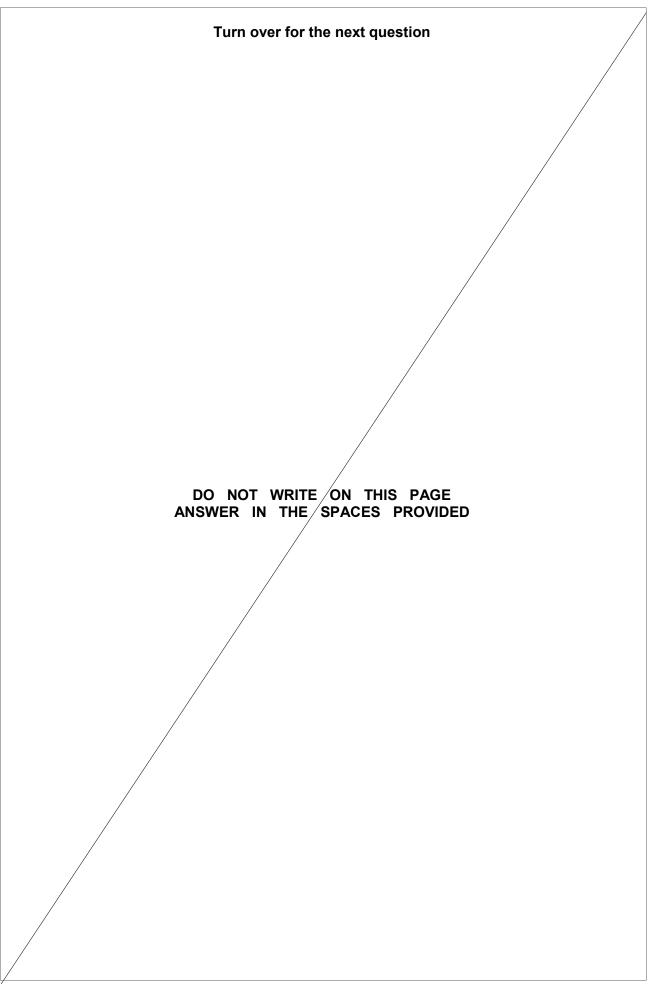
Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

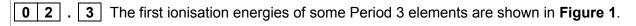
- The maximum mark for this paper is 80.
- The Periodic Table/Data Sheet is provided as in insert.

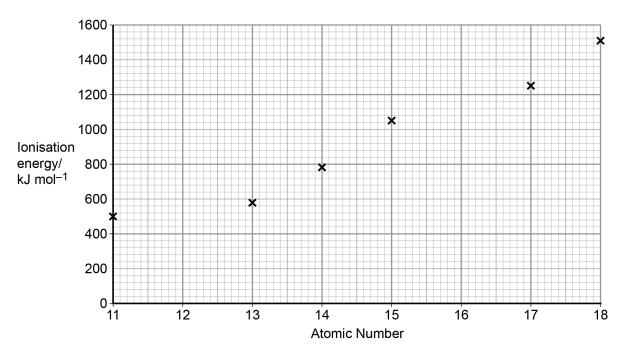
Advice


You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

7404/1

	Section A	
	Answer all questions in this section.	
1	This question is about electron configuration.	
0 1 . 1	Give the full electron configuration of an Al atom and of a Cr^{3+} ion.	
		! marks]
	Al atomCr ³⁺ ion	
	CI IOII	
0 1 . 2	Deduce the formula of the ion that has a charge of 2+ with the same electron configuration as krypton.	on
	['	1 mark]
0 1 . 3	Deduce the formula of the compound that contains 2+ ions and 3- ions that have the same electron configuration as argon.	t both
		1 mark]





2	This question is about Period 3 of the Periodic Table.	
0 2 . 1	Deduce which of Na ⁺ and Mg ²⁺ is the smaller ion. Explain your answer.	[2 marks]
	Smaller ion	
	Explanation	
0 2 . 2	Write an equation to represent the process that occurs when the first ion energy for sodium is measured.	
		[1 mark]

Complete **Figure 1** by plotting the approximate first ionisation energy values for magnesium and sulfur.

Explain why the first ionisation energy of sulfur is different from that of phosphorus
[4 marks

This question is about a white solid, MHCO₃, that dissolves in water and reacts with hydrochloric acid to give a salt.

$$MHCO_3 + HCl \rightarrow MCl + H_2O + CO_2$$

A student was asked to design an experiment to determine a value for the M_r of MHCO₃. The student dissolved 1464 mg of MHCO₃ in water and made the solution up to 250 cm³.

up to 250 cm³.

25.0 cm³ samples of the solution were titrated with 0.102 mol dm⁻³ hydrochloric acid. The results are shown in **Table 1**.

Table 1

	Rough	1	2	3
Initial burette reading / cm ³	0.00	10.00	19.50	29.25
Final burette reading / cm ³	10.00	19.50	29.25	38.90
Titre / cm ³	10.00	9.50	9.75	9.65

0	3] .	1	Calculate the mean titre and use this to determine the amount, in moles, that reacted with 25.0 cm ³ of the MHCO ₃ solution.	of HCl
				ů .	[3 marks]
0	3] .	2	Calculate the amount, in moles, of MHCO ₃ in 250 cm ³ of the solution. Then calculate the experimental value for the M_r of MHCO ₃ .	
				Give your answer to the appropriate number of significant figures.	[2 marks]
					[3 marks]

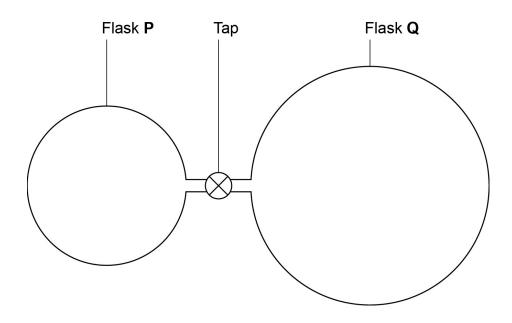
0 3 . 3	The student identified use of the burette as the largest source of uncertainty in the experiment.
	Using the same apparatus, suggest how the procedure could be improved to reduce the percentage uncertainty in using the burette.
	Justify your suggested improvement. [2 marks]
	Suggestion
	Justification
0 3 . 4	Another student is required to make up 250 cm ³ of an aqueous solution that contains a known mass of MHCO ₃ . The student is provided with a sample bottle containing the MHCO ₃ .
	Describe the method, including apparatus and practical details, that the student
	should use to prepare the solution
	should use to prepare the solution. [6 marks]
	·
	·
	·
	·
	·
	·
	·
	·
	·
	·

8	Do not write outside the box

Table 2 shows some data about the elements bromine and magnesium.

Table 2

Element	Melting point / K	Boiling point / K	
Bromine	266	332	
Magnesium	923	1383	


0	4] .	1	In terms of structure and bonding explain why the boiling point of bromine is different from that of magnesium. Suggest why magnesium is a liquid over a much greater temperature range compared to bromine.
				[5 marks]

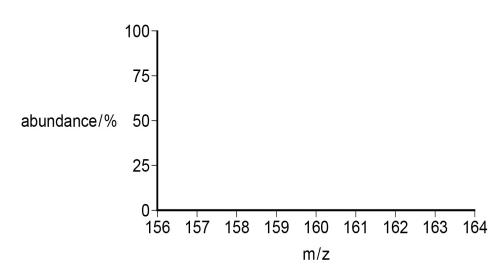
5 Figure 2 represents two glass flasks, P and Q, connected via a tap.

Flask **Q** (volume = $1.00 \times 10^3 \text{ cm}^3$) is filled with ammonia (NH₃) at 102 kPa and 300 K. The tap is closed and there is a vacuum in flask **P**. (Gas constant R = $8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)

Figure 2

0 5	<u>i</u> .	1	Calculate the mass of ammonia in flask Q . Give your answer to the appropriate number of significant figures.	[3 marks]

Ca	ecreases by 5 °C. The final pressure in both flasks is 75.0 kPa. alculate the volume, in cm³, of flask P .	[3 mark
_		
_		
_		
	Turn over for the next question	



6		
0 6 . 1	Explain how ions are accelerated, detected and have their abundance of in a time of flight (TOF) mass spectrometer.	letermined [3 marks]
		[3 IIIaiks]
0 6 . 2	Calculate the mass, in kg, of a single $^{52}\text{Cr}^+$ ion. Assume that the mass of a $^{52}\text{Cr}^+$ ion is the same as that of a ^{52}Cr atom.	
	(The Avogadro constant L = $6.022 \times 10^{23} \text{ mol}^{-1}$)	
		[1 mark]
-		
0 6 . 3] In a TOF mass spectrometer the kinetic energy (KE) of a $^{52}\text{Cr}^+$ ion was 1.269 x 10^{-13} J	
	Calculate the velocity of the ion using the equation.	
	$KE = \frac{1}{2}mv^2$	
	$(m = \text{mass/kg and } v = \text{velocity/ms}^{-1})$	[2 marks]

0 6 . 4 Bromine has two isotopes, ⁷⁹Br and ⁸¹Br, in approximately equal abundance. In a TOF mass spectrometer bromine forms ions with formula $[Br_2]^+$

Sketch the pattern of peaks you would expect to see in the mass spectrum of a sample of bromine.

[2 marks]

 $oxed{0}$. $oxed{5}$ A sample of xenon has A_r = 131.31. The sample consists of four isotopes. The abundances of three of the isotopes are shown in **Table 3**. The data for one of the isotopes, ${}^m\!Xe$, is missing.

Table 3

Isotope	¹²⁹ Xe	¹³¹ Xe	¹³² Xe	^m Xe
% abundance	28.0	25.0	27.0	To be calculated

Use the data to calculate the abundance of isotope ^mXe and calculate m, the mass number of ^mXe. Show your working.

[4 marks]

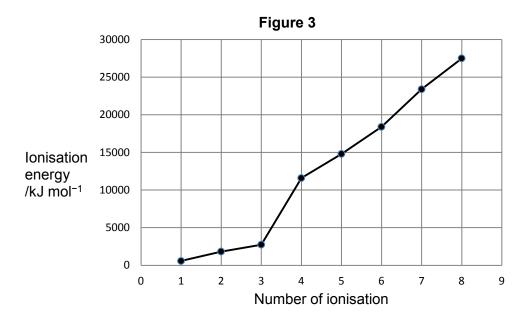
7	Ammonia reacts with aluminium chloride as shown by the equation:	
	$NH_3 + AlCl_3 \rightarrow H_3NAlCl_3$	
0 7 . 1] Draw diagrams to illustrate the shapes of NH_3 molecules and of $AlCl_3$ molecules	3.
	Include in your diagrams any lone pairs of electrons that influence the shape.	
	Indicate the values of the bond angles.	
	[3 mark	ks]

0 7 . 2	Name the type of bond formed between N and Al in H ₃ NAlCl ₃ and explain how this bond is formed. [2 marks]
	Type of bond
	Explanation
0 7 . 3	Explain how the value of the Cl-Al-Cl bond angle in AlCl ₃ changes, if at all, on formation of the compound H ₃ NAlCl ₃
	[2 marks]
	Turn over for the next question

8				A student oxidised a solution of hydrochloric acid with a few drops of sodiur chlorate(I) solution. The reaction mixture effervesced and turned pale green gas formed bleached universal indicator paper.	
0	8		1	Write a half-equation for the oxidation of chloride ions.	
				Ι	1 mark]
0	8		2	Write a half-equation for the reduction of chlorate(I) ions to chlorine in acidi conditions.	c 1 mark]
				L	i iliai kj
0	8	•	3	Write an overall equation for the redox reaction of chlorate(I) ions with hydrochloric acid.	1 mark]
0	8		4	A solution of sodium chlorate(I) was added to a colourless solution of potas iodide. Suggest what is observed.	esium
				Explain the reaction that leads to this observation. [3	marks]

9				
0	9].	1	A student was given a powder made from a mixture of anhydrous barium chloride and anhydrous magnesium chloride. The student dissolved 1.056 g of the powder in water in a conical flask and added an excess of sulfuric acid. A white precipitate formed and was filtered off, washed and dried. The mass of this solid was 0.764 g.
				Identify the white precipitate and calculate the percentage, by mass, of magnesium chloride in the powder. [4 marks]

Turn over for the next question



	Section B		
	Answer all questions in the spaces provided		
			_
-	nswer per question is allowed. nswer completely fill in the circle alongside the appropriate answer.		\
CORRECT MET	HOD WRONG METHODS WRONG METHODS WRONG METHODS WRONG METHODS WRON		
If you want	to change your answer you must cross out your original answer as	s shown.	
If you wish shown.	o return to an answer previously crossed out, ring the answer you now	w wish to select as	
	your working out in the blank spaces around the questions but this wadditional sheets for this working.	vill not be marked.	
1 0	Which element is in the d-block of the Periodic Table?		
		[1 mark	.]
	A Selenium	0	
	B Antimony	0	
	C Tantalum	0	
	D Lead	0	
1 1	Which species contains an element with an oxidation state of +4	?	
	A NO ₂ ⁺	[1 mark	.]
	B ClO ₃		
	C H ₂ SO ₃		
	D PCl ₅	0	

1 2	There are 392 mol of pure gold in a bar measuring 10 cm by 10 cm What is the density of gold in kg dm ⁻³ ?	n by 40 cm.
	What is the density of gold in hig dim .	[1 mark]
	A 193	0
	B 19.3	\bigcirc
	C 1.93	0
	D 0.193	0
1 3	lons of two isotopes of iron are	
	⁵³ Fe ²⁺	
	Which statement is correct?	[1 mark]
	A The ions of both the isotopes have the electronic configuration $1s^22s^22p^63s^23p^64s^23d^6$	<u> </u>
	B The ions of both the isotopes contains 26 neutrons	0
	C ⁵³ Fe ²⁺ has fewer protons than ⁵⁶ Fe ²⁺	0
	D After acceleration to the same kinetic energy ⁵⁶ Fe ²⁺ will move more slowly than ⁵³ Fe ²⁺	0

1 4 The successive ionisation energies for element X are shown in Figure 3.

Which element is X?

[1 mark]

4	Nitrogen				
---	----------	--	--	--	--

0

1 5 Which of these decreases down Group 2?

[1 mark]

A First ionisation energy

0

B Atomic radius

C Number of protons

 \circ

D Reactivity with water

Refer to the unbalanced equation below when answering questions 16 and 17.

$$\mathsf{K}_2\mathsf{Cr}_2\mathsf{O}_7 \; + \; 3\mathsf{H}_2\mathsf{C}_2\mathsf{O}_4 \; + \; _\mathsf{H}_2\mathsf{SO}_4 \; \to \; \mathsf{Cr}_2(\mathsf{SO}_4)_3 \; + \; _\mathsf{H}_2\mathsf{O} \; + \; \mathsf{6CO}_2 \; + \; \mathsf{K}_2\mathsf{SO}_4$$

1 6 In the balanced equation the mole ratio for sulfuric acid to water is

[1 mark]

A 1:4

0

B 1:2

0

C 4:7

0

D 4:9

0

1 7 What is the reducing agent in this reaction?

[1 mark]

A H⁺

0

B $C_2O_4^{2-}$

0

C K⁺

0

D $Cr_2O_7^{2-}$

1 8	Which substance exists as a macromolecule?	
1 8	 Which substance exists as a macromolecule? A Cu B SiO₂ C P₄O₁₀ D MgO 	[1 mark] O O O
1 9	A pale brown mixture of NO_2 and N_2O_4 is allowed to reach equilibriugas syringe according to the following equation. $2NO_2(g)\ \rightleftharpoons\ N_2O_4(g)$ When the plunger is pushed further into the syringe the pressure in mixture becomes paler in colour.	
	When the syringe is placed in a hot oven the mixture becomes dark	er in colour.
	 Which of the following statements is correct? A NO₂ is brown and the forward reaction is exothermic. B NO₂ is brown and the forward reaction is endothermic. C NO₂ is colourless and the forward reaction is exothermic. D NO₂ is colourless and the forward reaction is endothermic. 	[1 mark]

2 0	Which molecule has the largest dipole?		
	A ClF ₃	0	[1 mark]
	B BF ₃		
	C SF ₆		
	D CF ₄	\bigcirc	
2 1	In a molecule of a hydrocarbon, the fraction by mass of carbon is $\frac{1}{1}$	<u>)</u>	
	What is the empirical formula of the hydrocarbon?	1	
	A CH	0	[1 mark]
	B CH ₃		
	C C ₃ H ₈		
	- 3 0		
	D C ₅ H ₁₂		

2 2	30 cm ³ of xenon are mixed with 20 cm ³ of fluorine. The gases react according to the following equation. Assume that the temperature and pressure remain constant.				
		$Xe(g) + F_2(g) \rightarrow XeF_2(g)$			
	What is the final volume of gas after the reaction is complete?				
	A	50 cm ³	\bigcirc	[1 mark]	
	В	40 cm ³	\bigcirc		
	С	30 cm ³	\bigcirc		
	D	20 cm ³	\bigcirc		
2 3		Which of the following solutions would react exactly with a solution containing 0.0500 mol sulfuric acid?			
	Α	50.0 cm ³ of 1.00 mol dm ⁻³ KOH	\bigcirc	[1 mark]	
	В	100.0 cm ³ of 2.00 mol dm ⁻³ KOH	\bigcirc		
	С	100.0 cm ³ of 2.00 mol dm ⁻³ Ba(OH) ₂			

D 50.0 cm³ of 1.00 mol dm⁻³ Ba(OH)₂

2 4

In a car airbag, sodium azide (NaN_3) decomposes to form sodium metal and nitrogen gas.

$$2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$$

The sodium metal then reacts with potassium nitrate to produce more nitrogen gas.

$$10Na(s) + 2KNO_3(s) \rightarrow N_2(g) + 5Na_2O(s) + K_2O(s)$$

If 2.00 mol of sodium azide react in this way, how many molecules of N_2 will be formed?

(The Avogadro constant L = $6.022 \times 10^{23} \text{ mol}^{-1}$)

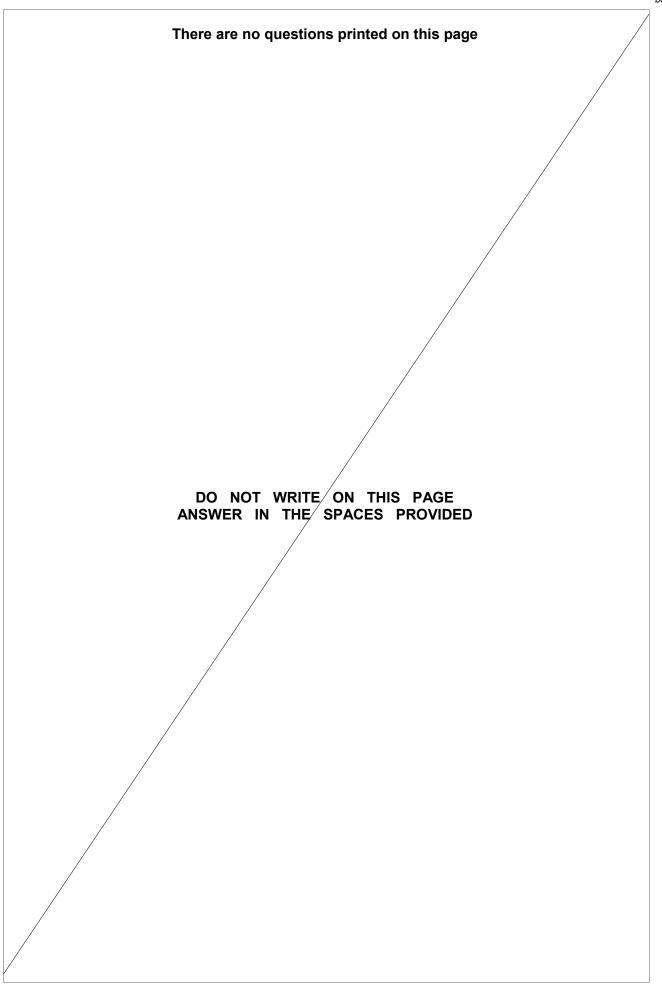
[1 mark]

A 2.41×10^{24}

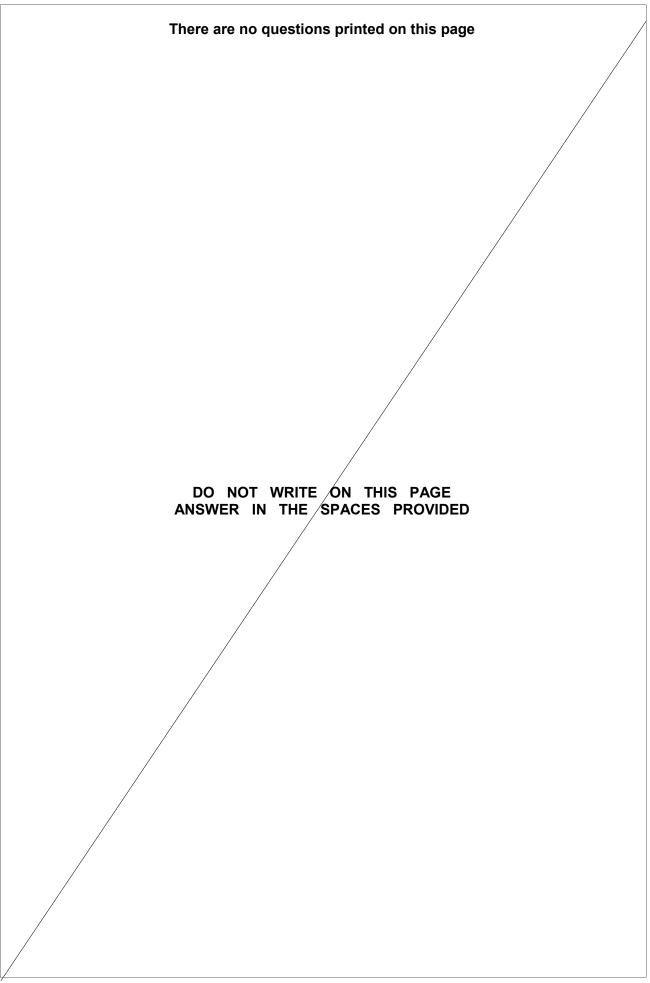
0

B 1.93×10^{24}

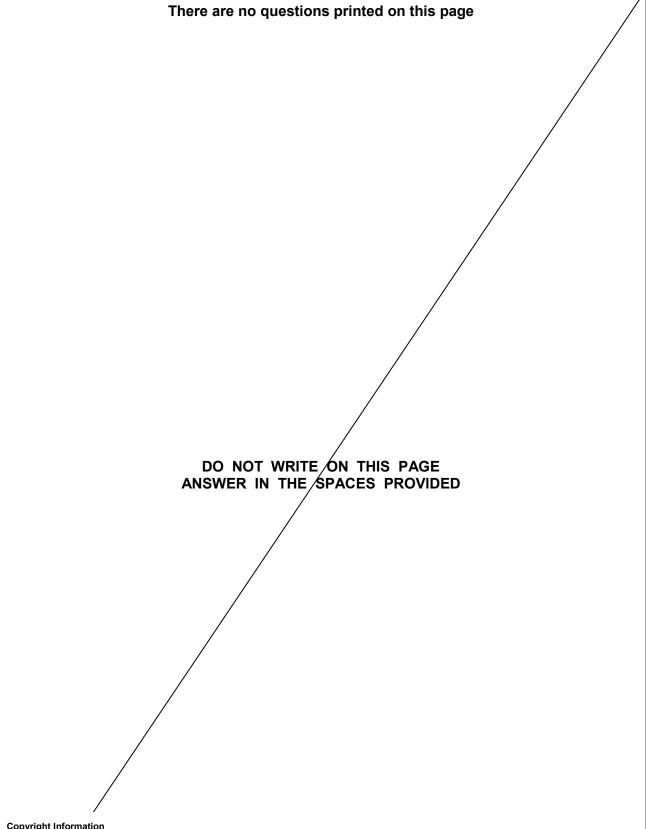
0


C 1.81×10^{24}

0


D 9.63×10^{23}

0


END OF QUESTIONS

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2016 AQA and its licensors. All rights reserved.

