AQA'-	J		
Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

AS CHEMISTRY

Paper 1: Inorganic and Physical Chemistry

Friday 26 May 2017

Morning

Time allowed: 1 hour 30 minutes

For Examiner's Use

Mark

Question

1

2

3

4

5

6

7

8

Section B

TOTAL

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

• You are advised to spend about 65 minutes on **Section A** and 25 minutes on **Section B**.

	2	
	Section A	
	Answer all questions in this section.	
0 1	This question is about atomic structure.	
0 1 . 1	Write the full electron configuration for each of the following species.	[2 marks]
	Cl ⁻	
F	e ²⁺	
0 1.2	Write an equation, including state symbols, to represent the process the when the third ionisation energy of manganese is measured.	nat occurs [1 mark]
0 1 . 3	State which of the elements magnesium and aluminium has the lower first ionisation energy.	
	Explain your answer.	[3 marks]

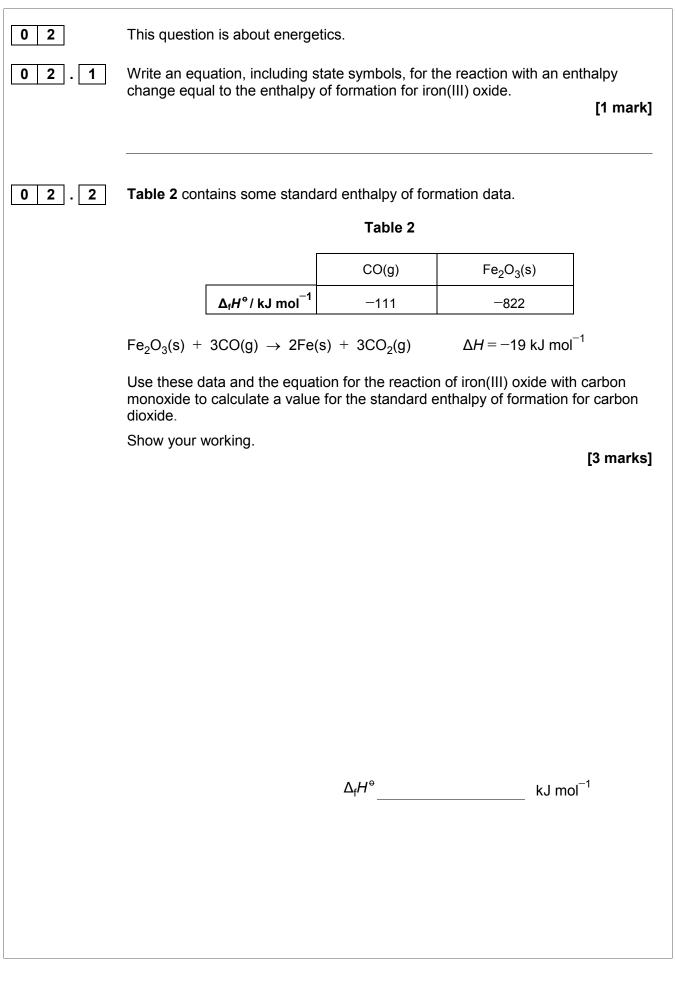
0 1.4

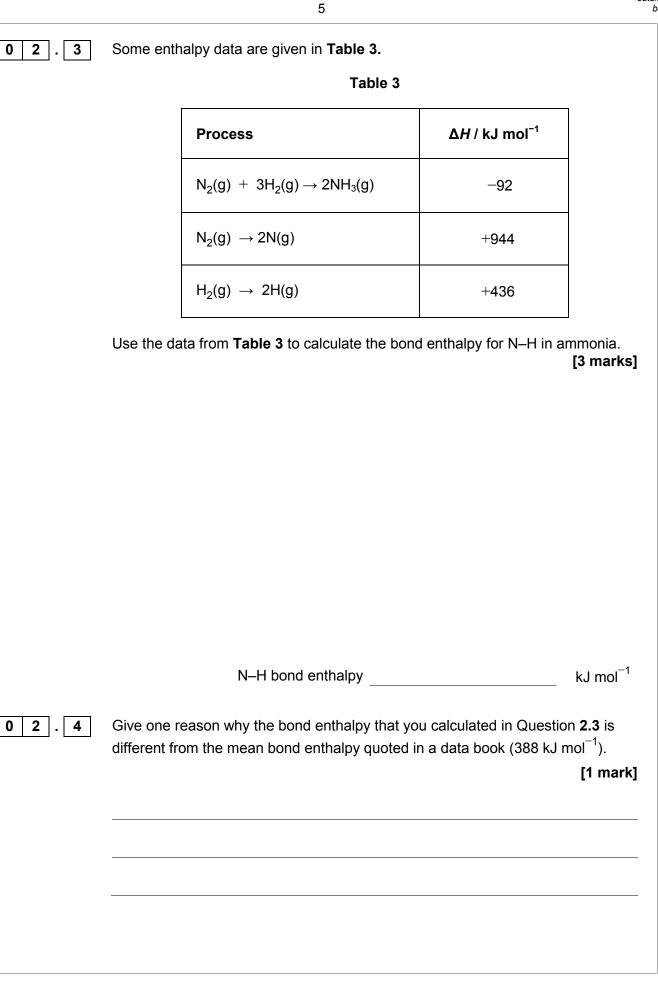
A sample of nickel was analysed in a time of flight (TOF) mass spectrometer. The sample was ionised by electron impact ionisation. The spectrum produced showed three peaks with abundances as set out in **Table 1**.

m/z	Abundance/%
58	61.0
60	29.1
61	9.9

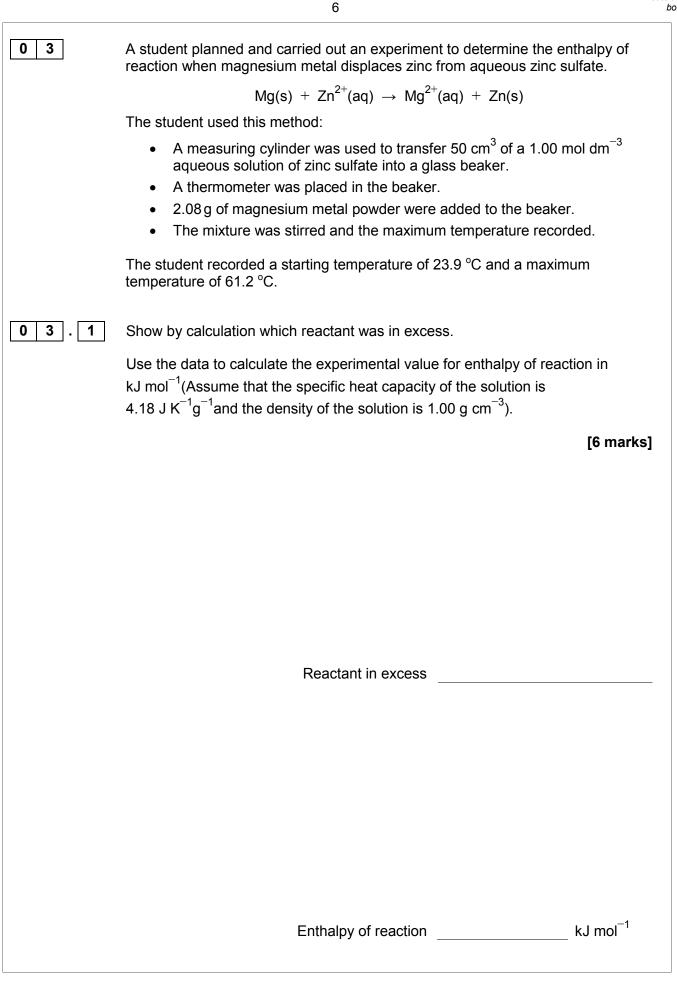
Table 1

Give the symbol, including mass number, of the ion that would reach the detector first in the sample.


Calculate the relative atomic mass of the nickel in the sample. Give your answer to one decimal place.


[3 marks]

Symbol of ion

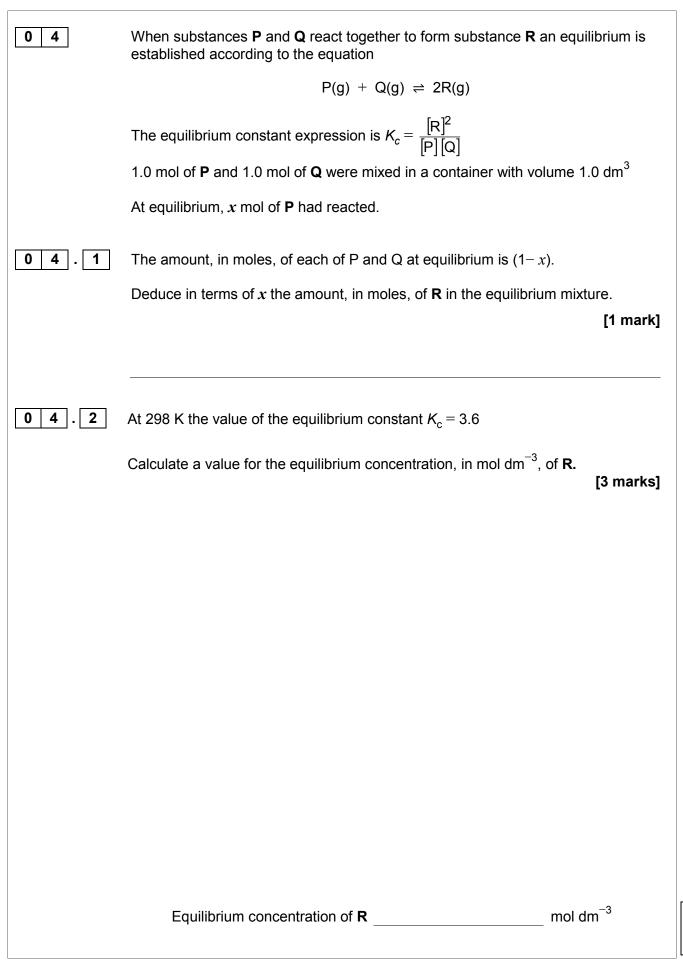

Relative atomic mass

0 3 . 2

Another student used the same method and obtained a value for the enthalpy of reaction of -142 kJ mol^{-1}

A data book value for the enthalpy of reaction is -310 kJ mol^{-1}

Suggest the most likely reason for the large difference between the student's experimental value and the data book value.


[1 mark]

Question 3 continues on the next page

	8	Do not write outside the box
3.3	Suggest how the students' method, and the analysis of the results, could be improved in order to determine a more accurate value for the enthalpy of reaction.	
	Justify your suggestions.	
	Do not refer to the precision of the measuring equipment. Do not change the amounts or the concentration of the chemicals.	
		arks]
		13

9

				www.xtrapa
		10		
his q	uestion is ab	out intermolecular forces.		
ive th	he meaning o	of the term electronegativity		[1 mark]
xplain	n how perma ules.	nent dipole-dipole forces a	rise between hydrog	en chloride [2 marks]
		by naming the shape of eac		nt dipole.
				nt dipole. [4 marks]
Place		he final column if the molec		[4 marks] lecule has
	a tick (✓) in t	he final column if the molec Table 4	cule has a permaner Tick (√) if mol	[4 marks] lecule has

∎∎ 1	∎ II∎I 0	

 BeCl_2

CH₃Cl

0 5

0 5

0 5

0 5

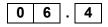
www.xtrapape	ers.com
Do not	
outsid	e the
bo	x

	11
06	Copper can be produced from rock that contains CuFeS ₂
06.1	Balance the equations for the two stages in this process. [2 marks
Cu	$IFeS_2 + \ldots O_2 + \ldots SiO_2 \rightarrow \ldots Cu_2 S + \ldots Cu_2 O + \ldots SO_2 + \ldots FeSiO_3$
C	$Cu_2S + \dots Cu_2O \rightarrow \dots Cu + \dots SO_2$
0 6 . 2	Suggest two reasons why the sulfur dioxide by-product of this process is removed from the exhaust gases. [2 marks]
	Reason 1
	Reason 2
	Question 6 continues on the next page

6.3

0

A passenger jet contains 4050 kg of copper wiring.


A rock sample contains 1.25% $CuFeS_2$ by mass.

Calculate the mass, in tonnes, of rock needed to produce enough copper wire for a passenger jet. (1 tonne = 1000 kg)

[4 marks]

Mass of rock tonnes

Copper can also be produced by the reaction of carbon with copper(II) oxide according to the equation

$$2CuO + C \rightarrow 2Cu + CO_2$$

Calculate the percentage atom economy for the production of copper by this process.

Give your answer to the appropriate number of significant figures.

[2 marks]

Percentage atom economy

		14	
0 7	An aqueous solution Y is k type of negative ion.	known to contain one type of group 2 metal ion	n and one
		ric acid and magnesium nitrate are added to a observations are shown in Table 5.	separate
		Table 5	
	Solution added	Observation with solution Y	
	Sulfuric acid	A white precipitate forms	
	Magnesium nitrate	A white precipitate forms	
0 7 . 1			kes place [2 marks]
	Group 2 metal ion		
0 7 . 2	lonic equation	negative ion present in solution Y .	
	Write an ionic equation, in	cluding state symbols, for the reaction that tak	kes place
	when magnesium nitrate is		[2 marks]
	Negative ion		
	lonic equation		

www.xtrapapers.com Do not write outside the 15 box When an acidified solution of sodium nitrite (NaNO₂) is added to aqueous 0 8 potassium iodide, iodine and nitrogen monoxide (NO) are formed. Give the oxidation state of nitrogen in the following species. 0 8 1 [2 marks] NO₂⁻_____ NO 0 8 . 2 Write a half-equation for the conversion of NO_2^- in an acidic solution into NO [1 mark] 0 8 . 3 Write a half-equation for the conversion of I^- into I_2 [1 mark] 0 8. 4 Write an overall ionic equation for the reaction of NO_2^- in an acidic solution with I^{-} [1 mark] 0 8 . 5 State the role of $\mathrm{NO_2}^-$ in the reaction with I^- [1 mark] Question 8 continues on the next page

0 8 . 6

In aqueous solution, nitrite ions react with acidified chlorate(V) ions according to the equation

$$2ClO_{3}^{-} + 5NO_{2}^{-} + 2H^{+} \rightarrow Cl_{2} + 5NO_{3}^{-} + H_{2}O_{3}$$

A 25.0 cm³ sample of an aqueous solution of sodium nitrite required 27.40 cm³ of a 0.0200 mol dm^{-3} solution of potassium chlorate(V) for complete reaction.

Calculate the concentration, in g dm⁻³, of sodium nitrite in the sample. [4 marks]

Concentration of sodium nitrite ____ g dm⁻³

www.xtrapapers.com

			17	buisic
			Section B	
		Answer al	I questions in this section.	
-		question is allowed.	ongside the appropriate answ	
CORRECT METH		WRONG METHODS		
If you want to	o change	your answer you must c	ross out your original answei	r as shown.
			rossed out, ring the answer y	~ `
shown.				
		king in the blank space a sheets for this working.	round each question but this	will not be marked.
09	Wh	ich is the correct cryst	al structure for the substa	nce named? [1 mark]
		Substance	Structure	
	Α	lodine	Simple molecular	0
	В	Diamond	lonic	0
	С	Sodium chloride	Giant covalent	0
	D	Graphite	Metallic	0
1 0			ue to remove the silver ch er nitrate and sodium chlor	
	Α	Refluxing		\bigcirc
	В	Evaporation		0
	С	Filtration		0
	D	Distillation		\bigcirc

www.xtrapapers.com е

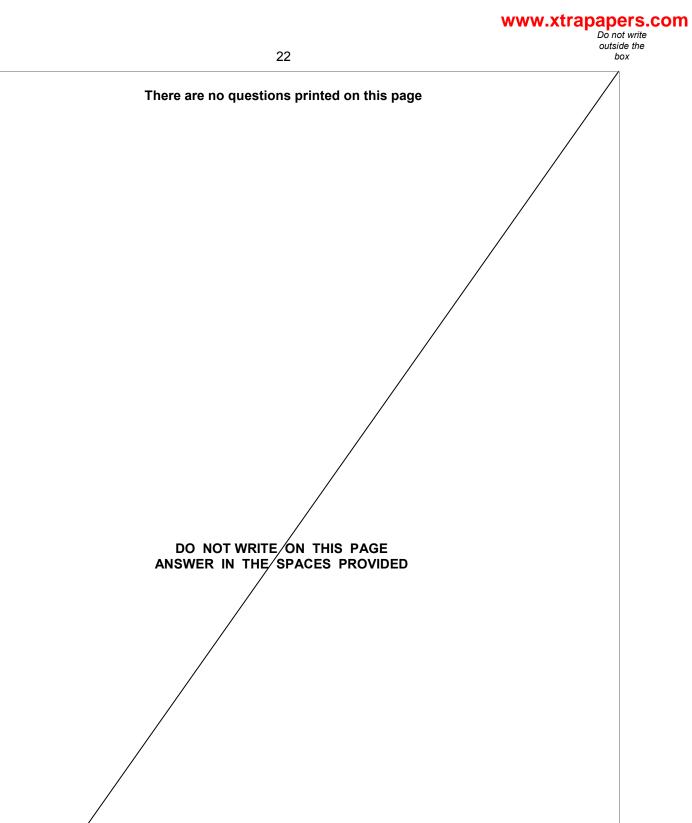
outside	the
box	

	18	bo
1 1	Which statement about astatine is correct?	[1 mark]
	A Astatine has a greater electronegativity than bromine	
	B Astatine is a better oxidising agent than bromine	
	C Astatine has a greater boiling point than bromine	
	D Astatine has a greater first ionisation energy than bromine	
1 2	Which statement about time of flight mass spectrometry is correct?	[1 mark]
	A The current in the detector is proportional to the ion abundance	
	B Sample particles gain electrons to form positive ions	
	C Particles are detected in the order of their kinetic energies	
	D lons are accelerated by a magnetic field	
1 3	Chlorine exists as two isotopes ³⁵ Cl and ³⁷ Cl in the ratio 3:1	
	Which statement about peaks in the mass spectrum of Cl_{2} is correct?	[1 mark]
	A Peaks at m/z = 70 and 74 in the ratio 3:1	
	B Peaks at m/z = 70, 72 and 74 in the ratio 9:6:1	
	C Peaks at m/z = 70, 72 and 74 in the ratio 9:3:1	
	D Peaks at m/z = 70 and 72 in the ratio 3:1	

	WWW. 19	xtrapapers. Do not write outside the box
1 4	A 4.85 g sample of anhydrous sodium sulfate is dissolved in water and the solution made up to 250 cm ³ in a volumetric flask.	9
	What is the concentration in mol dm^{-3} of sodium sulfate in the solution?	[1 mark]
	A 0.0341	
	B 0.137	
	C 0.163	
	D 0.273	
1 5	Which of these contains the greatest number of atoms?	[1 mark]
	A 127 mg of iodine	
	B 1.54×10^{-4} kg of phosphorus	
	C 81.0 mg of carbon dioxide	
	D 1.70×10^{-4} kg of ammonia	
1 6	25.0 cm ³ samples of NaOH solution were taken by pipette from a beaker. were then titrated with an aqueous solution of ethanoic acid. The concentre ethanoic acid calculated from the experimental results was found to be low than the actual value.	ration of
	Which of these could explain the difference?	1 mark]
	A Rinsing the pipette with distilled water before filling with ONAOH	
	B Rinsing the burette with distilled water before filling with chanoic acid	
	C Rinsing the walls of the conical flask with distilled water during the titration	
	D Rinsing the beaker with distilled water before filling with NaOH	

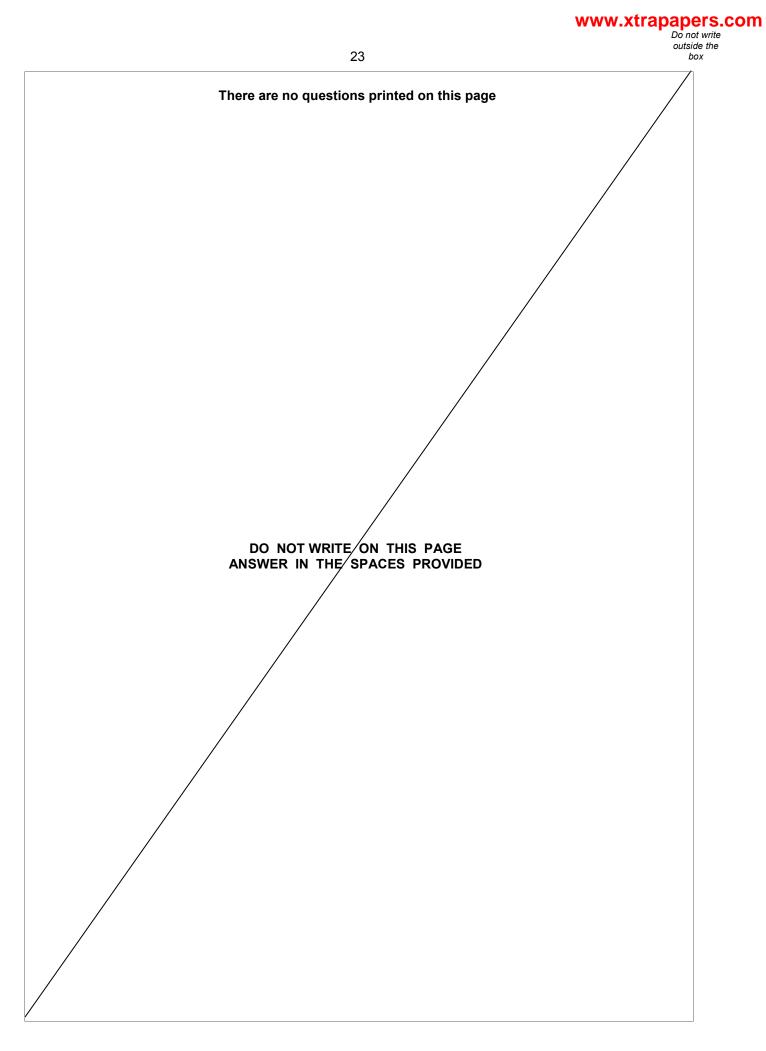
www.xtrapapers.com Do not write outside the box

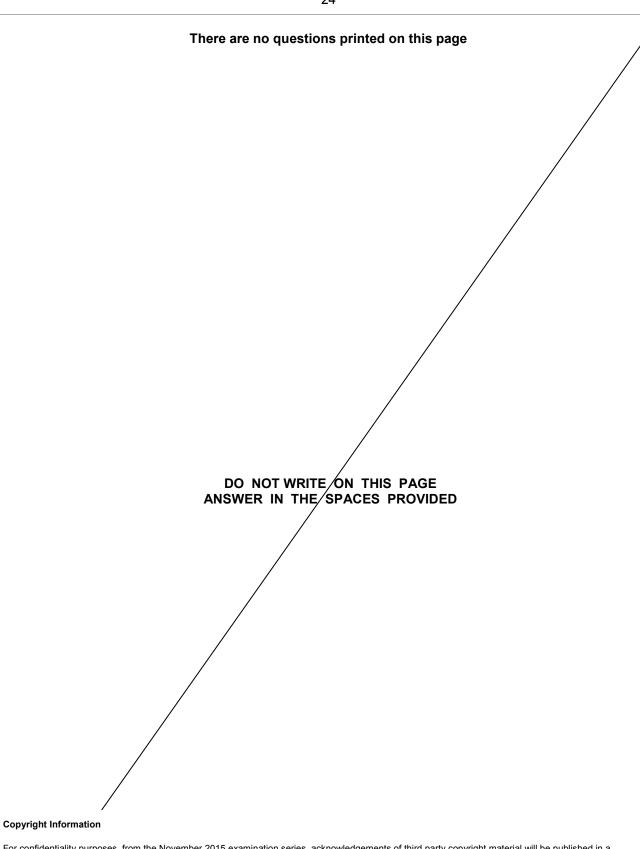
		1
1 7	A 20.0 cm ³ sample of a 0.400 mol dm ^{-3} aqueous solution of a metal bromide (MBr _n) reacts exactly with 160 cm ³ of 0.100 mol dn aqueous silver nitrate.	n ⁻³
	What is the formula of the metal bromide?	[1 mark]
	A MBr	0
	B MBr ₂	0
	C MBr ₃	\bigcirc
	D MBr ₄	0
1 8	Which species has one or more bond angle(s) of 90°?	[1 mark]
	A CH ₄	0
	B NH4 ⁺	0
	C CIF ₄	0
	D AlCl ₄	0
19	The forward reaction in this equilibrium is endothermic	
	$\text{COCl}_2(g) \rightleftharpoons \text{CO}(g) + \text{Cl}_2(g)$	
	Which statement is correct?	[1 mark]
	A If the total pressure is increased at constant temperature, the proportion of COCl_2 in the equilibrium mixture will decrease	0
	B Use of a catalyst will increase the proportion of COCl ₂ in the equilibrium mixture at constant temperature and pressure	0
	C Reducing the equilibrium concentration of CO will increase the value of the equilibrium constant	0
	D Raising the temperature from 373 K to 473 K will increase the value of the equilibrium constant	0



www.xtrapapers.com Do not write outside the box

2 0	Which of these is not a redox reaction?	[1 mark]
	$\textbf{A} \text{Cu}_2\text{O} \ + \ \text{H}_2\text{SO}_4 \rightarrow \text{Cu}\text{SO}_4 \ + \ \text{Cu} \ + \ \text{H}_2\text{O}$	0
	B MgO + 2HCl \rightarrow MgCl ₂ + H ₂ O	0
	$\mathbf{C} \mathrm{SnCl}_2 \ + \ \mathrm{HgCl}_2 \rightarrow \mathrm{Hg} \ + \ \mathrm{SnCl}_4$	0
	$\textbf{D} \text{MnO}_2 \ + \ 4\text{HCl} \rightarrow \text{MnCl}_2 \ + \ 2\text{H}_2\text{O} \ + \ \text{Cl}_2$	0
2 1	Which of these has the highest first ionisation energy?	[1 mark]
	A Na	0
	B Al	0
	C Si	0
	D Cl	0
22	What is the empirical formula of an oxide of nitrogen that contains 26% nitrogen by mass?	
	A NO ₂	
	B N_2O_3	
	C N_2O_5	
	D N_4O_5	
2 3	Which species is not produced by a redox reaction between solid sodium iodide and concentrated sulfuric acid?	
	A Na ₂ SO ₄	
	B H ₂ S	
	C S	
	D SO ₂	
	END OF QUESTIONS	


21



IB/M/Jun17/7404/1

outside the box

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

