AQA

AS

Physics data and formulae

For use in exams from the June 2016 Series onwards

DATA - FUNDAMENTAL CONSTANTS AND VALUES

Quantity
speed of light in vacuo
permeability of
free space
permittivity of free space
magnitude of the
charge of electron
the Planck
constant
gravitational
constant
the Avogadro
constant
molar gas
constant
the Boltzmann
constant
the Stefan
constant
the Wien constant
electron rest mass
(equivalent to
$5.5 \times 10^{-4} \mathrm{u}$)

Symbol
Value
3.00×10^{8}
m s-1
$c \quad 3.00 \times 10^{8} \quad \mathrm{~m} \mathrm{~s}^{-1}$
μ_{0} $4 \pi \times 10^{-7}$
H^{-1}

$$
\varepsilon_{0} \quad 8.85 \times 10^{-12} \quad F^{-1}
$$

e $\quad 1.60 \times 10^{-19}$
$h \quad 6.63 \times 10^{-34}$
J s
G $\quad 6.67 \times 10^{-11} \quad \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
$N_{\text {A }} \quad 6.02 \times 10^{23} \quad \mathrm{~mol}^{-1}$
R
8.31
$\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$k \quad 1.38 \times 10^{-23}$
$\mathrm{J}^{\mathbf{K}}{ }^{-1}$
$\sigma \quad 5.67 \times 10^{-8} \quad \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
$\alpha \quad 2.90 \times 10^{-3}$
m K
$m_{\mathrm{e}} \quad 9.11 \times 10^{-31}$
kg
electron
charge/mass ratio proton rest mass (equivalent to
1.00728 u)
proton
charge/mass ratio
neutron rest mass (equivalent to 1.00867 u)
gravitational field strength
m_{n}
$1.67(5) \times 10-27$
kg
acceleration due to
gravity
atomic mass unit
(1u is equivalent to 931.5 MeV)
[Turn over]

ALGEBRAIC EQUATION

quadratic equation

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

ASTRONOMICAL DATA

Body	Mass $/ \mathrm{kg}$	Mean radius $/$
Sun	1.99×10^{30}	6.96×10^{8}
Earth	5.97×10^{24}	6.37×10^{6}

GEOMETRICAL EQUATIONS

$$
\begin{array}{ll}
\text { arc length } & =r \theta \\
\text { circumference of circle } & =2 \pi r \\
\text { area of circle } & =\pi r^{2} \\
\text { curved surface area of cylinder } & =2 \pi r h \\
\text { area of sphere } & =4 \pi r^{2} \\
\text { volume of sphere } & =\frac{4}{3} \pi r^{3}
\end{array}
$$

Particle Physics

Class	Name	Symbol	Rest energy/MeV
photon	photon	γ	0
lepton	neutrino	v_{e}	0
		v_{μ}	0
	electron	$\mathrm{e}^{ \pm}$	0.510999
	muon	$\mu^{ \pm}$	105.659
mesons	π meson	$\pi^{ \pm}$	139.576
		π^{0}	134.972
	K meson	$\mathrm{K}^{ \pm}$	493.821
		$\mathrm{~K}^{0}$	497.762
baryons	proton	p	938.257
	neutron	n	939.551

[Turn over]

Properties of quarks antiquarks have opposite signs

Type	Charge	Baryon number	Strangeness
u	$+\frac{2}{3} \mathrm{e}$	$+\frac{1}{3}$	0
d	$-\frac{1}{3} \mathrm{e}$	$+\frac{1}{3}$	0
s	$-\frac{1}{3} \mathrm{e}$	$+\frac{1}{3}$	-1

Properties of Leptons

		Lepton number
Particles:	$\mathrm{e}^{-}, v_{\mathbf{e}} ; \mu^{-}, v_{\mu}$	+1
Antiparticles:	$\mathrm{e}^{+}, \overline{v_{\mathbf{e}}}, \mu^{+} \overline{v_{\mu}}$	-1

Photons and energy levels
photon energy
photoelectricity
energy levels
de Broglie wavelength $\quad \lambda=\frac{h}{p}=\frac{h}{m v}$

$$
\begin{aligned}
& E=h f=h c / \lambda \\
& h f=\phi+E_{k}(\max) \\
& h f=E_{1}-E_{2} \\
& \qquad \lambda=\frac{h}{p}=\frac{h}{m v}
\end{aligned}
$$

[Turn over]

Waves

wave speed

$$
c=f \lambda
$$

period

$$
f=\frac{1}{T}
$$

first
harmonic

$$
f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}
$$

fringe
spacing

$$
w=\frac{\lambda D}{s} \quad \begin{array}{ll}
\text { diffraction } \\
\text { grating }
\end{array}
$$

$$
d \sin \theta=n \lambda
$$

refractive index of a substance $s, \quad n=\frac{c}{c_{s}}$
for two different substances of refractive indices n_{1} and n_{2}, law of refraction $\quad n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
critical angle $\sin \theta_{c}=\frac{n_{2}}{n_{1}}$ for $n_{1}>n_{2}$

Mechanics
moments moment $=$ Fd
velocity and acceleration

$$
v=\frac{\Delta s}{\Delta t}
$$

$a=\frac{\Delta v}{\Delta t}$
equations of motion

$$
v=u+a t \quad s=\left(\frac{u+v}{2}\right) t
$$

$v^{2}=u^{2}+2 a s$
$s=u t+\frac{a t^{2}}{2}$
force

$$
F=m a
$$

force

$$
F=\frac{\Delta(m v)}{\Delta t}
$$

impulse
work, energy and power

$$
W=F s \cos \theta
$$

$$
\begin{aligned}
& \quad E_{\mathrm{k}}=\frac{1}{2} m v^{2} \quad \Delta E_{p}=m g \Delta h \\
& P=\frac{\Delta W}{\Delta t}, P=F v \\
& \text { efficiency }=\frac{\text { useful output power }}{\text { input power }}
\end{aligned}
$$

[Turn over]

Materials
density $\rho=\frac{m}{V} \quad$ Hooke's law $F=k \Delta L$
Young modulus $=\frac{\text { tensile stress }}{\text { tensile strain }}$
tensile stress $=\frac{F}{A}$
tensile strain $=\frac{\Delta L}{L}$
energy stored $E=\frac{1}{2} F \Delta L$

Electricity

current and pd $\quad I=\frac{\Delta Q}{\Delta t} \quad V=\frac{W}{Q} \quad R=\frac{V}{I}$
resistivity

$$
\rho=\frac{R A}{L}
$$

resistors in series

$$
R_{T}=R_{1}+R_{2}+R_{3}+\ldots
$$

resistors in parallel

$$
\frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
$$

power

$$
\mathrm{P}=\mathrm{V} I=I^{2} \mathrm{R}=\frac{V^{2}}{R}
$$

emf

$$
\varepsilon=\frac{E}{Q} \quad \varepsilon=I(R+r)
$$

There are no formulae printed on this page

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

