AQA

AS

Physics data and formulae

For use in exams from the June 2016 Series onwards

Quantity	Symbol	Value	Units
speed of light in vacuo	С	3.00 x 10 ⁸	m s ⁻¹
permeability of free space	μ ₀	4 π x 10 ⁻⁷	H m ⁻¹
permittivity of free space	03	8.85 x 10	F m ⁻¹
magnitude of the charge of electron	е	1.60 x 10 ⁻¹²	С
the Planck constant	h	6.63 x 10 ⁻³⁴	Js
gravitational constant	G	6.67 x 10 ⁻¹¹	N m ² kg ⁻²
the Avogadro constant	NA	6.02 x 10 ²³	mol ⁻¹
molar gas constant	R	8.31	J K ⁻¹ mol ⁻ 1
the Boltzmann constant	k	1.38 x 10 ⁻²³	J K ⁻¹
the Stefan constant	σ	5.67 x 10 ⁻⁸	W m ⁻²
the Wien constant	α	2.90 x 10 ⁻³	m K
electron rest mass (equivalent to 5.5 × 10 ⁻⁴ u)	Me	9.11 x 10 ⁻³¹	kg

electron charge/mass ratio	e me	1.76 x 10 ¹¹	C kg ⁻¹
proton rest mass (equivalent to 1.00728 u)	m _p	1.67(3) x 10 ⁻²⁷	kg
proton charge/mass ratio	e m _p	9.58 x 10 ⁷	C kg ⁻¹
neutron rest mass (equivalent to 1.00867 u)	m _n	1.67(5) x 10 ⁻²⁷	kg
gravitational field strength	g	9.81	N kg ⁻¹
acceleration due to gravity	g	9.81	m s ⁻²
atomic mass unit (1u is equivalent to 931.5 MeV)	u	1.661 x 10 ⁻²⁷	kg

ALGEBRAIC EQUATION

quadratic
equation

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

ASTRONOMICAL DATA

Body	Mass/kg	Mean radius/m
Sun	1.99 x 10 ³⁰	6.96 x 10 ⁸
Earth	5.97 x 10 ²⁴	6.37 x 10 ⁶

GEOMETRICAL EQUATIONS

arc length	= <i>rθ</i>
circumference of circle	= 2π <i>r</i>
area of circle	= 2π <i>rh</i>
curved surface area of cylinder	$= 4\pi r^2$
area of sphere	$= 4\pi r^2$
volume of sphere	$=\frac{4}{3}\pi r^3$

Particle Physics

Class	Name	Symbol	Rest energy/MeV
photon	photon	γ	0
lepton	neutrino	v _e	0
		v_{μ}	0
	electron	e±	0.510999
	muon	μ [±]	105.659
mesons	π meson	π^{\pm}	139.576
		π0	134.972
	K meson	K±	493.821
		K0	497.762
baryons	proton	р	938.257
	neutron	n	939.551

Particle Physics

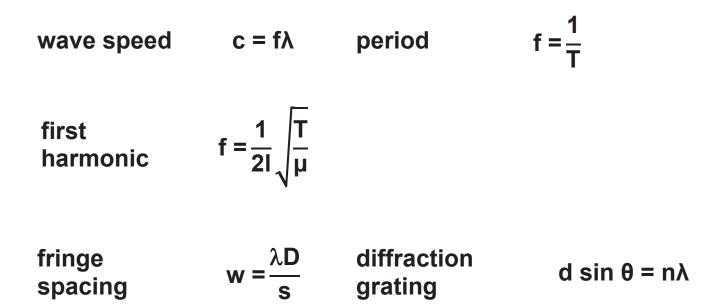
Properties of quarks antiquarks have opposite signs

Туре	Charge	Baryon number	Strangeness
u	$+\frac{2}{3}e$	+ 1/3	0
d	$-\frac{1}{3}e$	+ 1/3	0
s	- <mark>1</mark> e	$+\frac{1}{3}$	- 1

Properties of Leptons

		Lepton number
Particles:	e,v _e ;μ,v _μ	+ 1
Antiparticles:	e ⁺ , $\overline{v_e}$, μ^{\dagger} , V_{μ}	– 1

Photons and energy levels


photon energy

photoelectricity

energy levels

de Broglie wavelength $E = hf = hc /\lambda$ $hf = \phi + E_k (max)$ $hf = E_1 - E_2$ $\lambda = \frac{h}{p} = \frac{h}{mv}$

Waves

refractive index of a substance s, $n = \frac{c}{c_s}$

for two different substances of refractive indices n_1 and n_2 , law of refraction $n_1 \sin \theta_1 = n_2 \sin \theta_2$ critical angle $\sin \theta_c = \frac{n_2}{n_1}$ for $n_1 > n_2$

moments	moment = Fd	
velocity and acceleration	$\mathbf{v} = \frac{\Delta \mathbf{s}}{\Delta \mathbf{t}}$	$a = \frac{\Delta v}{\Delta t}$
equations of motion	v = u + at	$s = \left(\frac{u+v}{2}\right) t$
	$v^2 = u^2 + 2as$	s = ut + $\frac{at^2}{2}$
force	F = ma	
force	$F = \frac{\Delta(mv)}{\Delta t}$	
impulse	$F \Delta t = \Delta(mv)$	
work, energy and power	W = F s cos θ	
	$E_{k} = \frac{1}{2} m v^{2}$	ΔE _p = mg∆h
	$\mathbf{P} = \frac{\Delta \mathbf{W}}{\Delta \mathbf{t}}$, $\mathbf{P} = \mathbf{F}\mathbf{v}$	
	efficiency= useful output power	
[Turn over]	input power	

10

Materials

density $\rho = \frac{m}{v}$ Hooke's law $F = k \Delta L$ tensile stress = $\frac{F}{A}$ Young modulus $= \frac{\text{tensile stress}}{\text{tensile strain}}$ tensile strain = $\frac{\Delta L}{L}$ energy stored $E = \frac{1}{2}F\Delta L$ **Electricity** $I = \frac{\Delta Q}{\Delta t}$ $V = \frac{W}{Q}$ $R = \frac{V}{I}$ current and pd $\rho = \frac{RA}{I}$ resistivity resistors in RT series resistors in $\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{2}} + \dots$ parallel $P = VI = I^2R = \frac{V^2}{P}$ power $\varepsilon = \frac{E}{\Omega}$ $\varepsilon = I(R + r)$ emf

There are no sources printed on this page

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2016 AQA and its licensors. All rights reserved. IB/M/Jun16/CD/7407/INS/E2

www.xtrapapers.com