## AQA <br> Realising potential

## Sample questions: maths in science

These sample questions show how the five mathematical skills areas could be assessed in GCSE Combined Science. You can use them to understand the types of maths questions which might appear in the live papers and prepare your students.
Questions have been selected to cover the five mathematical skills areas, and where possible, the individual skills within these areas.

We've included the mark scheme for each item at the end of this document.
All questions are taken from our first set of specimen papers which can be found on aga.org.uk and Exampro.

## Questions

Questions will target maths skills at a level of demand appropriate to each subject.
In Foundation Tier papers questions assessing maths requirements will not be lower than that expected at Key Stage 3 (as outlined in Mathematics programmes of study: Key Stage 3 by the DfE, document reference DFE- 00179-2013).

In Higher Tier papers questions assessing maths requirements will not be lower than that of questions and tasks in assessments for the Foundation Tier in GCSE Mathematics.

At the beginning of each question we have referenced the paper it is taken from, the skill area it addresses and the level of demand (low targets grades 1-3, standard targets grades 4-5 and high targets grades 6-8).

## Arithmetic and numerical computation

## Synergy 3F

Skill 1b
Low demand

| 1 | $\mathbf{0}$ |
| :--- | :--- | This question is about speed.


| $\mathbf{1}$ | $\mathbf{0} \cdot \mathbf{1}$ What is a typical value for the speed of sound? |
| :--- | :--- | :--- |

Tick one box.
$\square$

| $3.3 \times 10^{2} \mathrm{~m} / \mathrm{s}$ | $\square$ |
| :--- | :--- |
| $3.3 \times 10^{3} \mathrm{~m} / \mathrm{s}$ | $\square$ |
| $3.3 \times 10^{6} \mathrm{~m} / \mathrm{s}$ | $\square$ |

## Chemistry 1F

Skill 1c

## Low demand

| $\mathbf{0}$ | 5 | $\mathbf{8}$ A coarse particle has a diameter of $1 \times 10^{-6} \mathrm{~m}$. |
| :--- | :--- | :--- |

A nanoparticle has a diameter of $1.6 \times 10^{-9} \mathrm{~m}$.

Calculate how many times bigger the diameter of the coarse particle is than the diameter of the nanoparticle.
[2 marks]
$\qquad$
$\qquad$
$\qquad$

Physics 1F
Skill 1c
Standard demand

Table 1 shows how the count rate from a radioactive source changes with time.

Table 1

| Time in seconds | 0 | 40 | 80 | 120 | 160 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Count rate <br> in counts/second | 400 | 283 | 200 | 141 | 100 |


| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{4}$ | Use Table 1 to calculate the count rate after 200 seconds. |
| :--- | :--- | :--- | :--- |

## Trilogy Biology 2H

Skills 1b, 2e
High demand

| $\mathbf{0}$ | 6 | $\mathbf{3}$ Two alleles control the body colour of carp: |
| :--- | :--- | :--- |

brown (B)
blue (b).
The brown allele is dominant to the blue allele.
Two carp that are heterozygous for colour are crossed and produce $2.6 \times 105$ offspring.

Approximately how many of the offspring are expected to be blue?
Draw a genetic diagram to explain your answer.
Give your answer in standard form.

Number of offspring expected to be blue $=$

## Physics 2H

Skills 1c, 3b, 3c, 3d
High demand

Figure 21 shows how a small weight placed on the insulating bar makes the wire $\mathbf{X}$ go back and balance in its original position.

Figure 21


| $\mathbf{1}$ | $\mathbf{2}$. | $\mathbf{3}$ The wire $\mathbf{X}$ is 5 cm long and carries a current of 1.5 A |
| :--- | :--- | :--- |

The small weight causes a clockwise moment of $4.8 \times 10^{-4} \mathrm{Nm}$.
Calculate the magnetic flux density where the wire $\mathbf{X}$ is positioned Give the unit.
[6 marks]
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Magnetic flux density $=$ $\qquad$ Unit -

## Trilogy Physics 1F

## Skills 1d, 2c

Standard demand

| 0 | $\mathbf{7}$. | $\mathbf{5}$ | A driver wishes to buy a new car. |
| :--- | :--- | :--- | :--- |

Table 2 gives some data about an electric car and one with a petrol engine.

## Table 2

|  | Electric car | Petrol engine car |
| :--- | :---: | :---: |
| Cost (£) | 27000 | 15000 |
| Running cost per year (£) | 250 | 2000 |
| Average lifetime (years) | 12 | 12 |

Which car would be the most economic over its 12 year lifetime?
Use data from Table 2 to support your answer.

You should include the difference in cost in your answer.

## Physics 2F

## Skill 1d

## Standard demand

| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{7}$ | A car driver sees a fallen tree lying across the road ahead and |
| :--- | :--- | :--- | :--- | makes an emergency stop.

The braking distance of the car depends on the speed of the car.
For the same braking force, explain what happens to the braking distance if the speed doubles.

You should refer to kinetic energy in your answer.

## Handling data

Trilogy Chemistry 2F

## Skills 2a, 2b

Low demand

| $\mathbf{0}$ | $\mathbf{2} \cdot \mathbf{7}$ A student measured the melting point of a solid hydrocarbon |
| :--- | :--- | :--- | four times.

The student's results are in Table 2.

## Table 2

|  | Trial 1 | Trial 2 | Trial 3 | Trial 4 |
| :--- | :---: | :---: | :---: | :---: |
| Melting point in ${ }^{\circ} \mathrm{C}$ | 35 | 48 | 37 |  |


|  |  |  |  | 37 |
| :--- | :--- | :--- | :--- | :--- |

Calculate the mean melting point of the hydrocarbon, leaving out any anomalous result.

Give your answer to two significant figures.

Mean melting point $=$ $\qquad$ ${ }^{\circ} \mathrm{C}$

## Synergy 3H

Skill 2a
High demand

| $\mathbf{0}$ | $\mathbf{6} .5$ | $\mathbf{5}$ The half equation at the cathode is: |
| :--- | :--- | :--- |

$$
\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}
$$

Calculate the number of moles of electrons needed to produce 1000 kg of aluminium.

Give your answer to three significant figures.

Relative atomic mass $\left(A_{r}\right): \mathrm{Al}=27$
moles

## Biology 2F

Skill 2b
Standard demand

Table 2

| Test <br> number | Distance ruler dropped in cm |  |
| :---: | :---: | :---: |
|  | Student A | Student B |
| 1 | 9 | 12 |
| 2 | 2 | 13 |
| 3 | 6 | 13 |
| 4 | 7 | 9 |
| 5 | 7 | 8 |
| Mean | $\mathbf{7}$ | $\mathbf{X}$ |


| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{5}$ | Calculate the value of $\mathbf{X}$ in Table 2. |
| :--- | :--- | :--- | :--- |

Mean distance ruler dropped $=$
cm

## Trilogy Physics 2F

Skill 2c
Low demand

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{7}$ Table 1 shows some results with a different spring. |
| :--- | :--- | :--- |

## Table 1

| Force applied in $\mathbf{N}$ | Extension in $\mathbf{m}$ |
| :---: | :---: |
| 0.0 | 0.000 |
| 0.5 | 0.025 |
| 1.0 | 0.050 |
| 1.5 | 0.075 |

What would the extension be with a force of 2.0 N ?
Tick one box.
0.080 m $\square$
0.090 m

0.095 m $\square$
0.100 m $\square$

## Chemistry 2F

## Skill 2c

## Standard demand

| 0 | 6 | Table 2 gives information about four alcohols. |
| :--- | :--- | :--- |

## Table 2

| Alcohol | Formula | Melting point in ${ }^{\circ} \mathbf{C}$ | Boiling point in ${ }^{\circ} \mathbf{C}$ |
| :--- | :--- | :---: | :---: |
| Methanol | $\mathrm{CH}_{3} \mathrm{OH}$ | -94 | 65 |
| Ethanol | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ | -118 | 78 |
| Propanol | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ | -129 | 97 |
| Butanol | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ | -89 | 118 |


| $\mathbf{0}$ | 6 | $\mathbf{1}$ Which alcohol in Table $\mathbf{2}$ is liquid over the greatest temperature range? |
| :--- | :--- | :--- |

## Trilogy Biology 2F

## Skill 2e

## Low demand

Two alleles control the body colour of carp:

- brown (B)
- blue (b).

The brown allele is dominant to the blue allele.

The genetic cross from breeding two carp is shown in Figure 8.

Figure 8


| 0 | 4 | 4 |
| :--- | :--- | :--- | brown?

Tick two boxes.


Biology 2F
Skill 2e
Standard demand

| 0 | 8 | 4 | Complete the genetic diagram in Figure 12. |
| :--- | :--- | :--- | :--- |

- Identify any children with CF.
- Give the probability of any children having CF.

Each parent does not have CF.

The following symbols have been used:
D = dominant allele for not having CF
d = recessive allele for having CF

Figure 12


Probability of a child with $\mathrm{CF}=$

## Biology 2H

Skill 2e
High demand

| 0 | $\mathbf{7}$ | 4 | A recessive allele causes syndrome H . |
| :--- | :--- | :--- | :--- |

A heterozygous woman and a homozygous recessive man want to have a child.

Draw a Punnett square diagram to determine the probability of the child having syndrome H .

Identify any children with syndrome H .

Use the following symbols:
A = dominant allele
a = recessive allele

Probability $=$ $\qquad$

## Biology 1F

Skill 2h
Low demand

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{5}$ The cheek cell in Figure $\mathbf{6}$ is magnified 250 times. |
| :--- | :--- | :--- | :--- |

The width of the cell is shown by the line $\mathbf{D}$ to $\mathbf{E}$.
Figure 6


Calculate the width of the cheek cell in micrometres ( $\mu \mathrm{m}$ ).

Complete the following steps.

Measure the width of the cell using a ruler
mm

Use the equation to work out the real width of the cell in mm:
real size $=\frac{\text { image size }}{\text { magnification }}$ mm

Convert mm to $\mu \mathrm{m}$
$\mu \mathrm{m}$

## Synergy 1H

Skill 2h
High demand

## Table 4

|  | Fluid $\mathbf{A}$ | Fluid B |
| :--- | :---: | :---: |
| pH | 7.3 | 5.6 |
| Sugar in $\mathrm{mg} / \mathrm{cm} 3$ | 118 | 1.18 |
| Nitrate ions in $\mathrm{mg} / \mathrm{cm} 3$ | 10 | 600 |
| Potassium ions in $\mu \mathrm{g} / \mathrm{cm} 3$ | 1.18 | 2500 |


| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{3}$ | In fluid $\mathbf{A}$, how many times greater is the concentration of sugar |
| :--- | :--- | :--- | :--- | than the concentration of potassium ions?

## Algebra

Physics 2F

## Skill 3b

Standard demand

| 0 | 9 | Figure 15 shows the forces acting on a child who is balancing on a |
| :--- | :--- | :--- | pogo stick.

The child and pogo stick are not moving.

Figure 15


The child has a weight of 343 N .
Gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

| 0 | 9 | 3 | Write down the equation which links gravitational field strength, |
| :--- | :--- | :--- | :--- | mass and weight.


| 0 | $\mathbf{9}$ | $\mathbf{4}$ Calculate the mass of the child. |
| :--- | :--- | :--- | :--- |

[3 marks]

The weight of the child causes the spring to compress elastically from a length of 30 cm to a new length of 23 cm .

| 0 | $\mathbf{9}$ | $\mathbf{5}$ Write down the equation which links compression, force and spring |
| :--- | :--- | :--- | :--- | constant.

[1 mark]

| 0 | 9 | 6 |
| :--- | :--- | :--- |

Mass = kg

Give your answer in newtons per metre.

## Trilogy Physics 2F

Skills 3c, 3d
Low demand

| $\mathbf{0}$ | $\mathbf{2}$. | 8 |
| :--- | :--- | :--- | The spring constant for the spring in Table $\mathbf{1}$ is $20 \mathrm{~N} / \mathrm{m}$.

Calculate the work done in stretching the spring until the extension of the spring is 0.050 m

Use the correct equation from the Physics Equation Sheet.
Work done =

## Trilogy Physics 2F

Skills 3c, 3d
Low demand

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ The car travels a distance of 2040 metres in 2 minutes. |
| :--- | :--- | :--- | :--- |

Use the following equation to calculate the mean speed of the car.
mean speed $=\frac{\text { distance }}{\text { time }}$

## Physics 1H

Skills 3b, 3c, 3d

## High demand

| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{5}$ | At the lowest point in the jump, the energy stored by the stretched |
| :--- | :--- | :--- | :--- | bungee cord

is 24.5 kJ .
The bungee cord behaves like a spring.
Calculate the spring constant of the bungee cord.
Use the correct equation from the Physics Equation Sheet.
[3 marks]

Spring constant $=$
N / m

Synergy 4H
Skill 3b
High demand

| 0 | 9 | Figure 7 shows a rollercoaster. |
| :--- | :--- | :--- |

Figure 7


The rollercoaster car is raised a vertical distance of 35 m to point A by a motor in 45 seconds.
The mass of the rollercoaster is 600 kg .
The motor has a power rating of 8000 W .


Calculate the speed of the roller coaster at point $\mathbf{B}$.

Assume that the decrease in potential energy store is equal to the increase in kinetic energy store.
$\qquad$
Speed at point $\mathbf{B}=$ $\qquad$ m/s

## Graphs

Physics 2F

## Skill 4a

## Low demand

At the top of the slope the skier leaves the drag lift and skis back to the bottom of the slope.

Figure 13 shows how the velocity of the skier changes with time as the skier moves down the slope.

Figure 13


| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{4}$ | After 50 seconds the skier starts to slow down. |
| :--- | :--- | :--- | :--- |

The skier decelerates at a constant rate coming to a stop in 15 seconds.

Draw a line on Figure 13 to show the change in velocity of the skier as she slows down and comes to a stop.
[2 marks]

## Trilogy Biology 1F

Skill 4a
Low demand

| 0 | 4 |
| :--- | :--- | Some students investigated how exercise affects heart rate.

Figure 4 shows their results.
Figure 4


| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{3}$ For how many minutes did the students run? |
| :--- | :--- | :--- | :--- |

Tick one box.

2 $\square$
4 $\square$
6

## Synergy 2F

## Skill 4c

## Low demand


Table 3

| Time after eating <br> in hours | Blood sugar levels in mg per $\mathbf{1 0 0} \mathbf{c m}^{\mathbf{3}}$ of blood |  |
| :---: | :---: | :---: |
|  | Person A | Person B |
| 0 | 70 | 130 |
| 1 | 150 | 230 |
| 2 | 90 | 185 |
| 3 | 80 | 165 |
| 4 | 75 | 140 |

Use data from Table 3 to complete the graph in Figure 4.
Plot the points for person $\mathbf{A}$.
The first two points have been plotted for you.
Draw a line through all the points.

Figure 4


## Trilogy Chemistry 1F

Skill 4c
Standard demand

| $\mathbf{0}$ | 8 | 2 |
| :--- | :--- | :--- |
| 2 |  |  | solution at different temperatures.

Table 3

| Solubility of sodium chloride in g per $\mathbf{1 0 0} \mathbf{c m}^{\mathbf{3}}$ | Temperature in ${ }^{\circ} \mathbf{C}$ |
| :---: | :---: |
| 35.72 | 10 |
| 35.89 | 20 |
| 36.09 | 30 |
| 37.37 | 40 |
| 36.69 | 50 |
| 37.04 | 60 |

On Figure 13:

- plot this data on the grid
- draw a line of best fit.

Figure 13


Geometry and trigonometry

## Physics 2H

## Skill 5a

High demand

## 08 <br> A train travels from town $\mathbf{A}$ to town $\mathbf{B}$.

Figure 14 shows the route taken by the train.
Figure 14 has been drawn to scale.

Figure 14


| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{2}$ Use Figure 14 to determine the displacement of the train in travelling |
| :--- | :--- | :--- | :--- | from $\mathbf{A}$ to $\mathbf{B}$.

Show how you obtain your answer.
[2 marks]

Displacement $=\mathrm{km}$
$\qquad$

## Chemistry 2F

Skill 5b
Low demand

| 0 | 6 | 3 | A molecule of methanol has five single covalent bonds. |
| :--- | :--- | :--- | :--- |

Draw the missing bonds in Figure 6 to complete the displayed formula for methanol.

Figure 6

H

H C O H

H

## Synergy 3F

Skill 5b
Standard demand

| 0 | 5 | $\mathbf{1}$ |
| :--- | :--- | :--- | Figure 6 shows a 3D model of a molecule of methane $\left(\mathrm{CH}_{4}\right)$.

Figure 6


Draw the 2D structure of a methane molecule.

## Mark schemes

## Arithmetic and numerical computation

## Synergy 3F

Question 10

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0 . 1}$ | $3.3 \times 10^{2} \mathrm{~m} / \mathrm{s}$ |  | 1 | $\mathrm{AO} 1 / 1$ |
|  |  |  |  | 4.7 .1 .1 |

Chemistry 1F
Question 5.8

| Question | Answers | Extra information | Mark | AO/Spec ref |
| :---: | :---: | :---: | :---: | :---: |
| 05.8 | indication of $\frac{1}{1.6}=0.625$ <br> and <br> use of indices $10^{-9}-10^{-6}=$ $10^{3}$ $0.625 \times 1000=$ <br> 625 (times bigger) | Both steps must be seen to score first mark | 1 <br> 1 | $\begin{aligned} & \mathrm{AO} 2 / 1 \\ & 4.2 .4 .1 \end{aligned}$ |

## Physics 1F

Question 7.4

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :--- | :--- | :---: | :---: |
| $\mathbf{0 2 7 . 4}$ | half-life $=80 \mathrm{~s}$ |  | 1 | $\mathrm{AO} 2 / 2$ |
|  | counts/s after 200 s = 71 | accept an answer of 70 | 1 | 4.4 .2 .3 |

## Trilogy B2H

Question 6.3

| Question | Answers | Extra information | Mark | AO/Spec ref |
| :---: | :---: | :---: | :---: | :---: |
| 06.3 | parents genotype both Bb | allow correctly derived gametes | 1 | $\begin{aligned} & \mathrm{AO} 2 / 2 \\ & \text { 4.6.1. } \end{aligned}$ |
|  | offspring genotypes correctly derived |  | 1 | $\begin{aligned} & \mathrm{AO} 2 / 2 \\ & \text { 4.6.1.4 } \end{aligned}$ |
|  | bb identified as blue | allow ring around bb only | 1 | AO3/1b 4.6.1.4 |
|  | 65000 |  | 1 | AO2/2 |
|  |  | $\begin{aligned} & \text { allow ecf or } 260000 \times \\ & 0.25 \end{aligned}$ |  | 4.6.1.4 |
|  | $6.5 \times 10^{4}$ |  | 1 | AO2/2 |
|  |  |  |  | 4.6.1.4 |

Physics 2H
Question 12.3

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :--- | :--- | :---: | :---: |
| 2.3 | $4.8 \times 10^{-4}=\mathrm{F} \times 8 \times 10^{-2}$ |  | 1 | $\mathrm{AO} 2 / 1$ |
|  | $\mathrm{~F}=6 \times 10^{-3}(\mathrm{~N})$ |  |  |  |
| $6 \times 10^{-3}=\mathrm{B} \times 1.5 \times 5 \times 10^{-2}$ |  | 1 | 4.7 .2 .2 |  |
|  | $\mathrm{~B}=\frac{6 \times 10^{-3}}{7.5 \times 10^{-2}}$ |  |  |  |
| $\mathrm{~B}=8 \times 10^{-2}$ or 0.08 |  |  |  |  |
|  |  | allow 8 $\times 10^{-2}$ or 0.08 <br> with no working shown <br> for 5 marks <br> a correct method with <br> correct calculation <br> using an incorrect value <br> of F gains 3 marks | 1 | 4.5 .4 |
|  | Tesla <br> accept T <br> do not accept t | 1 | AO1/1 |  |
|  |  |  | 4.7 .2 .2 |  |

## Trilogy P1F

Question 7.5

| Question | Answers | Mark | AO/Spec ref |
| :---: | :---: | :---: | :---: |
| 7.5 | Level 2: A relevant and coherent argument which demonstrates processing and numerical analysis of the information presented and draw a conclusion which is logically consistent with the reasoning and refers to payback time for the vehicles. | 3-4 | AO3/2b6.1.3 |
|  | Level 1: Simple comparisons are made which demonstrate a basic ability to numerically analyse the information presented. The conclusion, if present, may not be consistent with the calculations. | 1-2 |  |
|  | No relevant content | 0 |  |
|  | Indicative content <br> - The electric car costs $£ 12000$ more to buy <br> - Running cost of electric car $=£ 3000$ <br> - Running cost of petrol engine car = £24 000 <br> - Total cost of electric car $=£ 30000$ <br> - Total cost of petrol engine car $=£ 39000$ <br> - The electric car cost $£ 1750$ less to run each year <br> - The electric car will save $£ 9000$ <br> - Additional cost is covered in 6.9 years <br> - So the electric car will be cheaper over the 12 year lifetime <br> or <br> Electric <br> $27000 / 12=2250$ <br> Annual cost $=2250+250=2500$ <br> Petrol $15000 / 12=1250$ <br> Annual cost $=1250+2000=3250$ <br> So electric is $£ 750$ cheaper per year |  |  |

## Physics 2F

Question 10.7

| Question | Answers | Extra information | Mark | AO/Spec ref |
| :---: | :---: | :---: | :---: | :---: |
| 10.7 | Level 2: A detailed and coherent explanation is provided. The response makes logical links between clearly identified, relevant points that include references to the numerical factor. | 3-4 | 4 | $\begin{aligned} & \mathrm{AO} 2 / 1 \\ & \text { 4.1.1.2 } \\ & 4.5 .6 .3 \end{aligned}$ |
|  | Level 1: Simple statements are made. The response may fail to make logical links between the points raised. | 1-2 |  |  |
|  | No relevant content | 0 |  |  |
|  | Indicative content <br> - doubling speed increase the kinetic <br> - kinetic energy increases by a facto <br> - work done (by brakes) to stop the <br> - work done increases by a factor of <br> - work done is force x distance and is constant <br> so if work done increases by 4 then distance must increase by | energy <br> of 4 <br> ar increases <br> raking force <br> he braking <br> 4 |  |  |
| Total |  |  | 14 |  |

## Handling data

## Trilogy C2F

Question 2.7

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :--- | :--- | :---: | :---: |
| $\mathbf{0 2 . 7}$ | 36 | $(35+37+37 / 3)=36.33$ |  | 1 |
| AO2/1 |  |  |  |  |
|  |  | allow (35 $+48+37+$ <br> $37 / 4=) 39(.25)$ for 1 <br> mark | 1 | 5.7 .1 .3 |

## Synergy 3H

## Question 6.5

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :--- | :--- | :---: | :---: |
| $\mathbf{0 6 . 5}$ | 3 moles of electrons are <br> needed to produce 27 g or <br> 0.027 kg aluminium <br> so moles of electrons to <br> produce 1 000 kg = 1 <br> $000 / 0.027 \times 3$ <br> $=111000$ | allow 111000 with no <br> working shown for 3 <br> marks <br> incorrect no. of sig. figs <br> max 2 marks | 1 | AO2/1 |

## Biology 2F

Question 7.5

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 7 . 5}$ | $(12+13+13+9+8 / 5=)$ |  | 1 | $\mathrm{AO} 2 / 2$ |
|  | 11 |  |  | 4.5 .2 .1 |

## Trilogy P2F

Question 2.7

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :--- | :--- | :---: | :---: |
| $\mathbf{0 2 . 7}$ | 0.100 m | if more than one box <br> ticked apply list <br> principle | 1 | AO3/2a |
|  |  |  |  | 6.5 .3 |
|  |  |  |  | WS3.5 |

## Chemistry 2F

Question 6.1

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 6 . 1}$ | Propanol |  | 1 | AO2/1 |
|  |  |  |  | 4.2 .2 .1 |
|  |  |  |  | 4.2 .2 .4 |

Trilogy B2F
Question 4.4

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 4 . 4}$ | 0.5 | allow ecf from 04.2 | 1 | AO3/1b <br> 4.6 .1 .4 |

## Biology 2F

Question 8.4

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :--- | :--- | :---: | :---: |
| $\mathbf{0 8 . 4}$ | correct derivation of <br> children's genotypes |  | 1 | AO2/1 <br> identification of children <br> with cystic fibrosis (dd) |
|  | 0.25 | allow ecf <br> allow $1 / 4 / 25 \% / 1$ in 4 / <br> $1: 3$ <br> do not accept 1:4 | 1 | AO3/1b <br>  |

## Biology 2H

Question 7.4

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :--- | :---: | :---: | :---: |
| $\mathbf{0 7 . 4}$ | mother / woman's gametes <br> correct: A a |  | 1 | AO2/2 |
|  | father / man's gametes <br> correct: a a |  | 1 | AO2/2 |
|  | correct derivation of <br> offspring | ecf | 1.6 .1 .6 |  |
|  |  |  | AO2/2 |  |


|  | identification of child with <br> syndrome H or genotype <br> aa |  | 1 | AO2/2 |
| :--- | :--- | :--- | :---: | :---: |
|  | 0.5 | ecf <br> allow $50 \% / 1 / 2 / 1$ in 2 / <br> $1: 1$ | 1 | AO3/2b |
|  | do not accept 1:2 | 4.6 .1 .6 |  |  |

## Biology 1F

## Question 3.5



## Synergy 1H

## Question 8.3

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :--- | :--- | :---: | :---: |
| $\mathbf{0 8 . 3}$ | correct conversion of 1.18 <br> $\mu \mathrm{g}$ to $\mathrm{mg} / \mathrm{cm}^{3}$ |  | 1 | $\mathrm{AO} 2 / 1$ <br> 4.2 .2 .3 |
|  | $\frac{118}{0.00118}=100000$ | allow 1 mark for 100 (ie <br> no conversion to mg) <br> allow 100 000 with no <br> working shown for 2 <br> marks | 1 |  |

## Algebra

## Physics 2F

Questions 9.3-9.6

| Question | Answers | Extra information | Mark | AO/Spec ref |
| :---: | :---: | :---: | :---: | :---: |
| 09.3 | weight $=$ mass $x$ gravitational field strength | accept gravity for gravitational field strength accept $\mathrm{W}=\mathrm{mg}$ accept correct rearrangement ie mass = weight / gravitational field strength or $\mathrm{m}=$ W/g | 1 | $\begin{aligned} & \text { AO1/1 } \\ & \text { 4.5.1.3 } \end{aligned}$ |
| 09.4 | $\begin{aligned} & 343=m \times 9.8 \\ & m=\frac{343}{9.8} \\ & m=35 \end{aligned}$ | allow 35 with no working shown for 3 marks | 1 1 <br> 1 | AO2/1 <br> AO2/1 <br> AO2/1 <br> 4.5.1.3 |
| 09.5 | force $=$ spring constant $\times$ compression | accept force = spring constant $\times$ extension accept F $=\mathrm{k}$ e accept correct rearrangement ie constant = force / extension or $k=F / e$ | 1 | $\begin{gathered} \text { AO1/1 } \\ 4.5 .3 \end{gathered}$ |
| 09.6 | $\begin{aligned} & \text { compression }=0.07 \mathrm{~m} \\ & 343=k \times 0.07 \\ & k=343 \div 0.07 \\ & k=4900 \end{aligned}$ | allow 4900 with no working shown for 4 marks <br> allow 49 with no working shown for 3 marks | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | AO2/1 <br> AO2/1 <br> AO2/1 <br> AO2/1 <br> 4.5.3 |

Trilogy Physics 2F
Question 2.8

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :---: | :--- | :---: | :---: |
| $\mathbf{0 2 . 8}$ | $0.5 \times 20 \times(0.050)^{2}$ <br> $=0.025(\mathrm{~J})$ | allow $0.025(\mathrm{~J})$ with no <br> working for 2 marks | 1 | 6.5 .3 |
|  |  |  |  |  |

## Trilogy Physics 2F

Question 1.2

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :--- | :--- | :---: | :---: |
| $\mathbf{0 1 . 2}$ | $2040 / 120$ |  | 1 | AO2/1 |
|  | $17(\mathrm{~m} / \mathrm{s})$ | allow $17(\mathrm{~m} / \mathrm{s})$ with no <br> working shown for 2 <br> marks | 1 | 6.5 .4 .1 .2 |
|  |  |  |  |  |

## Physics 1H

## Question 11.5

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :--- | :--- | :---: | :---: |
| $\mathbf{1 1 . 5}$ | extension $=35(\mathrm{~m})$ and <br> conversion of 24.5 kJ to <br> 24500 J <br> $24500=1 / 2 \times \mathrm{k} \times 35^{2}$ <br> 40 |  | 1 | $\mathrm{AO} 2 / 2$ |
|  |  | allow 40 with no <br> working shown for 3 <br> marks <br> an answer of '16.2' <br> gains 2 marks | 1 | WS4.3 |
|  |  |  | 1 |  |

## Synergy 4H

Question 9.2

| Question | Answers | Extra information | Mark | AO/Spec ref |
| :---: | :---: | :---: | :---: | :---: |
| 09.2 | $\begin{aligned} & \text { gpe }=600 \times 9.8 \times 35 \\ & =205800 \\ & \text { gpe }=\mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{v}^{2} \\ & v=\sqrt{\frac{2 \times K E}{m}} \\ & =\sqrt{\frac{411600}{600}} \\ & =26.2(\mathrm{~m} / \mathrm{s}) \end{aligned}$ |  | 1 | AO2/1 |
|  |  | allow 26.2 with no | 1 | AO2/1 |
|  |  | working shown for 6 marks |  | $\begin{aligned} & \text { 4.6.1.5 } \\ & \text { 4.7.1.9 } \end{aligned}$ |

## Graphs

Physics 2F
Question 7.4

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :--- | :---: | :---: | :---: |
| $\mathbf{0 7 . 4}$ | straight line drawn from 13 <br> $\mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$ |  | 1 | $\mathrm{AO} 2 / 2$ |
| finishing on x-axis at 65 s |  |  |  |  |$\quad$|  |
| :---: | :---: | :---: |

## Biology 1F

Question 4.3

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :---: | :---: | :---: | :---: |
| 04.3 | 4 |  | 1 | AO2/1 |
|  |  |  |  | 4.4 .2 .2 |

## Synergy 2F

Question 3.2

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 3 . 2}$ | all three plots correct | accept two correct plots | 2 | $\mathrm{AO} 2 / 2$ |


|  | suitable line drawn | for 1 mark | 1 | 4.3 .1 .5 |
| :--- | :--- | :--- | :--- | :---: |

Trilogy C1F
Question 8.2

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :--- | :--- | :---: | :---: |
| $\mathbf{0 8 . 2}$ | all points correct | $\pm 1 / 2$ small square <br> allow 1 mark if 5 points <br> correct | 2 | AO2/2 <br> 5 |
| best fit line | 1 | 5.3 .2 .5 |  |  |

## Geometry and trigonometry

Physics 2H

## Question 8.2

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :--- | :--- | :---: | :---: |
| $\mathbf{0 8 . 2}$ | 37.5 km | accept any value <br> between 37.0 and 38.0 <br> inclusive <br> accept $62^{\circ}$ to the right <br> of the vertical <br> accept an angle in the <br> range $60^{\circ}-64^{\circ}$ <br> accept the angle <br> correctly measured and <br> marked on the diagram | 1 | AO2/2 |
|  | $062^{\circ}$ or $\mathrm{N} 62^{\circ} \mathrm{E}$ | 4.5 .6 .1 .1 |  |  |

## Chemistry 2F

Question 6.3

| Question | Answers | Extra information | Mark | AO/Spec <br> ref |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 6 . 3}$ | H |  | 1 | $\mathrm{AO} 2 / 1$ |
|  | $\mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{H}$ |  |  | 4.2 .1 .4 |
|  | H |  |  | 4.7 .2 .3 |
|  |  |  |  |  |

Synergy 3F
Question 5.1

| Question | Answers | Extra information | Mark | AO/Spec ref |
| :---: | :---: | :---: | :---: | :---: |
| 05.1 |  |  | 1 | $\begin{aligned} & \mathrm{AO} 2 / 1 \\ & \text { 4.6.2.4 } \end{aligned}$ |

