GCSE
Mathematics
Paper 1 Higher Tier
Mark scheme

8300
June 2017
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a,b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments

$\mathbf{1}$	2^{8}	B 1	
$\mathbf{2}$	ASA	B 1	
$\mathbf{3}$	$2,6,18,54,162$	B 1	
\begin{tabular}{\|c	c	c	c
\hline			
\end{tabular}			
$\mathbf{4}$	b is $\frac{3}{4}$ of a	B 1	

5	Any correct product of 36 using a prime factor	M1	2 and 18 2 and 2 and 9 3 and 12 3 and 3 and 4 2 and 3 and 6 May be on a factor tree or repeated division	
	2 and 2 and 3 and 3	A1	oe May be on a factor tree or repeated division	
	$2^{2} \times 3^{2}$ or $3^{2} \times 2^{2}$	A1		
	Additional Guidance			
	Allow any number of 1 s included as factors up to M1 A1 only			
	$1 \times 2^{2} \times 3^{2}$			M1A1A0
	$2^{2} .3^{2}$			M1A1A1
	$2+2+3+3$			M1A1A0
	$2^{2}+3^{2}$			M1A1A0
	$2^{2} 3^{2}$ or $2^{2}, 3^{2}$			M1A1A0
	$2 \times 2 \times 3 \times 3$ and $2^{2} \times 3^{2}$ on answer line but $2 \times 2 \times 3 \times 3=2^{2} \times 3^{2}$ on answer line			M1A1A0 M1A1A1
	$2^{2} \times 3^{2}=6^{4}$			M1A1A0
	6×6 with no prime factorisation			MOAOAO

Question	Answer	Mark	Comments

6	False True True True True False	B4	B3 for 5 correct B2 for 4 correct B1 for 3 correct
	Additional Guidance		
	Accept any clear indication as their answer		

7	$162 \times \frac{5}{3}$ or $162 \div \frac{3}{5}$ or 162×5 or 810 or $162 \div 3$ or 54	M1	oe $162 \div 0.6$	
	270	A1		
	Additional Guidance			
	For $162 \times \frac{5}{3}$ as a dec rounding or 162×1.6	$.66$	tter truncation or	
	97.2			MOAO

9(a)	2 or two	B1	Allow words which imply two times eg double, twice
9(b)	$\div 4$	B1	

Question	Answer	Mark	Comments

Alternative method 1

$2 x+x=18+6$	M1	oe Eliminates a variable Implied by $3 x=n$, where $n>18$
$3 x=24$ or $x=8$	A1	oe
$x=8$ and $y=2$	A1	

Alternative method 2

10

$y--2 y=18-2 \times 6$ or $y--2 y=18-12$ or $y+2 y=18-2 \times 6$ or $y+2 y=18-12$	M1	oe Eliminates a variable Implied by $2 x-2 y=12$ followed by $3 y=m$, where $m<18$
$3 y=6$ or $-3 y=-6$ or $y=2$ or $-y=-2$	A1	oe
$x=8$ and $y=2$	A1	

Alternative method 3

$\frac{18-y}{2}=y+6$ or $18-2 x=x-6$	M1	oe Eliminates a variable
$3 x=24$ or $x=8$ or $3 y=6$ or $y=2$	A1	oe Collects terms
$x=8$ and $y=2$	A1	

Question	Answer	Mark	Comments

$\begin{gathered} 10 \\ \text { cont } \end{gathered}$	Alternative method 4			
	Correctly evaluated trial of at least one pair of values in one equation for which they do not work	M1	eg$9-2=7$	
	Correctly evaluated trial of at least three pairs of values in one equation for which they do not work	M1dep	eg $\begin{aligned} & 9-2=7 \\ & 2 \times 11+5=27 \\ & 10-(-2)=12 \end{aligned}$ With none of the three as the answer	values given
	$x=8$ and $y=2$	A1		
	Additional Guidance			
	One correct value with one incorrect value (or no second value) and no working eg $x=6$ and $y=2$ eg $y=2$			M1A1A0 M1A1A0 M1A1A0
	$(8,2)$ or 8,2 on answer line (with or without working)			M1A1A1
	$(2,8)$ or 2,8 on answer line with no working			MOAOAO
	Embedded correct values in one equation only eg $2 \times 8+2=18$ Embedded correct values in both equations ie $2 \times 8+2=18$ and $8-2=6$			M1A0A0 M1A1A0
	Please check crossed out work, which may indicate correct rejection of a trial in this question, as covered in alternative method 4			

Question	Answer	Mark	Comments

11	Alternative method 1		
	4×15 or 60 or 2×10 or 20 or 80	M1	oe
	$\frac{10}{100} \times$ their 80 or 8 or 1.1 and working for first M1 seen	M1dep	oe $\frac{10}{100} \times$ their 60 or 6 or 66 or $\frac{10}{100} \times$ their 20 or 2 or 22
	their $80+$ their 8 or $1.1 \times$ their 80 or 88	M1dep	oe their $60+$ their $6+$ their $20+$ their 2 or $1.1 \times$ their $60+1.1 \times$ their 20 or their $66+$ their 22
	$0.03 \times$ their 88 or 2.64 or their 88×1.03	M1dep	oe
	90.64(p)	A1	

Question	Answer	Mark	Comments

$\begin{gathered} 11 \\ \text { cont } \end{gathered}$	Alternative method 2		
	$\frac{10}{100} \times 15$ or $1.5(0)$ and $\frac{10}{100} \times 10$ or 1 or 1.1 seen	M1	oe
	```15 + their 1.5(0) or 15 < 1.1 or 16.5(0) and 10+ their 1 or 10 * 1.1 or 11```	M1dep	oe 27.5(0) implies M2
	$\begin{aligned} & \text { their } 16.5(0) \times 0.03 \text { or } 0.495 \\ & \text { and their } 11 \times 0.03 \text { or } 0.33 \\ & \text { or } \\ & \text { their } 16.5(0) \times 1.03 \text { or } 16.995 \\ & \text { and their } 11 \times 1.03 \text { or } 11.33 \end{aligned}$	M1dep	oe   $4 \times$ their $16.5(0)+2 \times$ their 11 or their $66+$ their 22 or 88
	their $0.495 \times 4+$ their $0.33 \times 2$ or $1.98+0.66$ or 2.64 or their $16.995 \times 4$ or 67.98 and their $11.33 \times 2$ or 22.66	M1dep	oe   $0.03 \times$ their 88 or 2.64   or their $88 \times 1.03$
	90.64(p)	A1	


Question	Answer	Mark	Comments


$\begin{gathered} 11 \\ \text { cont } \end{gathered}$	Alternative method 3		
	$4 \times 15$ or 60   or $2 \times 10$ or 20   or 80	M1	oe
	$\frac{10}{100} \times$ their 80 or 8   or   $\frac{13}{100} \times$ their 80 or $10.4(0)$   or   1.13 and working for first M1 seen	M1dep	oe   $\frac{13}{100} \times$ their 60 or $7.8(0)$ or $\frac{13}{100} \times$ their 20 or $2.6(0)$
	their 80 + their 10.4(0)   or $1.13 \times 80$ or $90.4(0)$   or   $0.03 \times$ their 8 or 0.24	M1dep	oe   $60+$ their $7.8(0)+20+$ their $2.6(0)$ or 67.8(0) $+22.6(0)$
	their $80+$ their 10.4(0)   or $1.13 \times 80$ or $90.4(0)$   and   $0.03 \times$ their 8 or 0.24	M1dep	oe
	90.64(p)	A1	


Question	Answer	Mark	Comments



13	$6.0052(00) \times 10^{6}$	B2	B1 for their 6005200 written normally and correctly converted to standard form or no number written normally and answer$6 .(\ldots) \times 10^{6}$	
	Additional Guidance			
	(6500 200 and) 6.500 2(00) $\times 10^{6}$			B1
	65200 and $6.52 \times 10^{4}$			B1
	$10^{6} \times 6.0052(00)$			B2
	Correct value of 6005200 with no conversion to standard form			B0
	$6 \times 10^{6}$ with no number written normally			B1


14	$x<-2$ or $-2>x$	B1	
15 3 B1			


Question	Answer	Mark	Comments



16(b)	their $\frac{2}{5} \times$ their $\frac{1}{6}$	M1	their $\mathrm{P}($ Even $) \times$ their $\mathrm{P}($ Green $)$   ft from (a) if $0<$ both probabilities $<1$	
	$\frac{2}{30}$ or $\frac{1}{15}$	A1ft	oe fraction or decimal ft from (a) if $0<$ both probabilities $<1$	
	Additional Guidance			
	Allow 0.06 or $6 \%$ or better truncation or rounding or 0.07 or $7 \%$ for $\frac{2}{30}$			
	If the dice branches are not labelled there is no ft from (a)			
	If (a) has no attempt or an incorrect answer full marks can still be gained here for correct working (and answer)			
	Ignore further attempts to simplify or convert to a decimal or percentage after a correct fraction is seen   eg $\frac{2}{30}=\frac{1}{10}$ or $\frac{4}{60}=0.165$			M1A1


Question	Answer	Mark	Comments


	Alternative method 1		
17(a)	$\frac{-9--5}{4-2}$   or $\frac{-5--9}{2-4}$   or $(2,-5)-(4,-9)=(-2,4)$   or $(4,-9)-(2,-5)=(2,-4)$   or   change in $y$   change in $x$   or   $\frac{\Delta y}{\Delta x}$   or   triangle drawn with points $A$ and $B$ and side lengths of 4 and (-)2 identified   or   correct explanation of pattern of graph   and $\frac{-4}{2}=-2 \text { or } \frac{4}{-2}=-2$	B2	oe fraction eg $\frac{-9+5}{4-2}$ or $\frac{-5+9}{2-4}$   B1 for $\frac{-9--5}{4-2}$   or $\frac{-5--9}{2-4}$   or $(2,-5)-(4,-9)=(-2,4)$   or $(4,-9)-(2,-5)=(2,-4)$   or   change in $y$   change in $x$   or   $\frac{\Delta y}{\Delta x}$   or   triangle drawn with points $A$ and $B$ and side lengths of 4 and ( - )2 identified   or   correct explanation of pattern of graph   or $\frac{-4}{2}=-2 \text { or } \frac{4}{-2}=-2$



Question	Answer	Mark	Comments

Alternative method 1 - uses given point with one from (a) to show gradient $=\mathbf{- 2}$

$\frac{601--9}{-301-4}$ or $\frac{601--5}{-301-2}$	M1	oe eg $\frac{610}{-305}$ or $\frac{606}{-303}$
-2 and Yes	A1	Must see working for M1

Alternative method 2 - correct or no equation shown in (a)

Correct method to find   $y=-2 x-1$	M1	May be seen in part (a)
$y=-2 x-1$   and shows that $601=-2(-301)-1$   and Yes	A1	

## Alternative method 3 - incorrect equation shown in (a)

Substitutes -301 and 601 into their   equation from (a)	M1	equation must involve $x$ and $y$
Correct evaluation and No	A1ft	

17(b) Alternative method 4 - have gained two marks in (a) by any method

uses $(2,-5)$ or $(4,-9)$ to work out   $c=-1$	M1	
$601=-2(-301)+c$   and $c=-1$   and Yes	A 1	

Alternative method 5 - have shown that $c=-1$ for both points in (a)


Question	Answer	Mark	Comments

Alternative method 1 - price for 8 bottles
Any two (including at least one combination) of
Single shops
Method to work out cost using one shop

Shop A
$3 \times 1+5 \times 0.5$ or 5.5
or $4 \times 1+4 \times 0.5$ or 6
or
Shop B
$4 \times 1+4 \times 0.5$ or 6
or $5 \times 1+3 \times 0.5$ or 6.5
or
Shop C
$8 \times 0.7$ or 5.6
Combinations
18
Method to work out cost using two shops
$A$ and $B$
$(1+2 \times 0.5)+(2 \times 1+3 \times 0.5)$ or 5.5
or
B and C
$(2 \times 1+3 \times 0.5)+(3 \times 0.7)$ or 5.6
or
A and C
$(2 \times 1+4 \times 0.5)+(2 \times 0.7)$ or 5.4
or
$(1 \times 1+2 \times 0.5)+(5 \times 0.7)$ or 5.5
6 bottles from $A$ and 2 bottles from C with M2 awarded

Condone 2 from A and 2 from C with M2 awarded

SC2 6 bottles from A and 2 bottles from C with M1M0 awarded
SC1 6 bottles from A and 2 bottles from C with MOM0 awarded

Question	Answer	Mark	omments


18 cont	Alternative method 2 - best average cost per bottle			
	A is $\frac{2}{3}$ or $B$ is 0.7 or C is 0.7	M1	Accept 0.66 or $66(\mathrm{p})$ or better truncation or rounding or 0.67 or $67(p)$	
	A is $\frac{2}{3}$   and   $B$ is 0.7   and   C is 0.7	M1		
	6 bottles from A and 2 bottles from C with M2 awarded	A1	Condone 2 from A and 2 from C with M2 awarded   SC2 6 bottles from A and 2 bottles from C with M1M0 awarded   SC1 6 bottles from A and 2 bottles from C with MOMO awarded	
	Additional Guidance			
	In both methods, if a price or variable is chosen, values would be the respective multiples of that price or variable			
	For SC2, the M1 may have been awarded for the correct method or price for a different selection of 8 bottles or for the 6 from $A$ and 2 from $C$ eg only working is 6 from $A$ and 2 from $C$ and $£ 5.40$			SC2
	Calculations or total costs may not be labelled, but shops may be implied by prices			
	An incorrect evaluation of the total cost of 6 from $A$ and 2 from $C$ leads to a maximum of M1M1A0   Ignore other incorrect evaluations which do not affect the award of marks			



Question	Answer	Mark	Comments


19(b)	Alternative method 1			
	$\begin{aligned} & 60-0.2 \times 60 \\ & \text { or } 60 \times 0.8 \text { or } 48 \end{aligned}$	M1	oe implied by vertical axis	ne from 48 on
	Correct reading from their increasing graph	A1ft	$\pm \frac{1}{2}$ square	
	Alternative method 2			
	$70+\frac{3}{8} \times 10$	M1		
	[73, 75]	A1		
	Additional Guidance			
	The correct answer is likely to be [73, 75 ] from a correct graph			


20	16	B1		
21(a)	Ticks No and gives valid reason	B1	Examples of valid reasons: translation (by $\binom{6}{0}$ ) $\binom{6}{0}$ or $\left(\frac{6}{0}\right)$ or $(6,0)$ rotation (of $180^{\circ}$ ), (centre $(0,2.5)$ ) enlargement (of scale factor) -1 (about (0, 2.5))	
	Additional Guidance			
	Full descriptions are not needed, but if given must be correct For the enlargement, the scale factor of -1 must be given			
	Transformation (6, 0)			B1
	Moved 6 to the right			B1
	Moved 6 squares			B0
	Condone 'turn' with full description of $180^{\circ}$, (centre) (0, 2.5)			B1
	2 or more single transformations given, with at least 1 correct			B1


Question	Answer	Mark	Comments


21(b)	Enlargement, scale factor -2 centre ( $-1,0$ )	B3	B2 Enlargement, scale factor -2   or enlargement centre $(-1,0)$   or scale factor -2 , centre $(-1,0)$   B1 (Triangle with) vertices at $(0,-1)(0,-3)$ and (3, -2)   or enlargement   or scale factor -2 or scale factor 2	
	Additional Guidance			
	'Scale factor' and 'centre' may be implied eg enlargement, $-2,(-1,0)$			B3
	Allow ' 1 on the $x$-axis' for ( $-1,0$ )			
	No triangle on diagram, but vertices stated as coordinates and no other marks awarded			B1
	A combination of transformations can score a maximum of 1 mark for the triangle drawn or vertices identified			
	Correct triangle drawn and 'enlargement', with no other marks awarded			B1
	Enlargement, (scale factor) $-\frac{1}{2}$, centre $(-1,0)$			B2

22

## $\frac{Q S}{P T}$

Question	Answer	Mark	Comments
23(a)	$[6,6.5]$	B1	



24(a)	$\frac{7}{2}$	B1	oe improper fraction   eg $\frac{14}{4}$
	Additional Guidance		
	Condone $\pm$ on numerator and/or denominator		


24(b)	$\begin{aligned} & (16=) 2^{4} \text { or }(\sqrt[3]{16}=) 16^{\frac{1}{3}} \text { or } \sqrt[4]{16}=2 \\ & \text { or } 4^{\frac{2}{3}} \text { or } 2 \sqrt[3]{2} \end{aligned}$	M1	oe	
	$2^{\frac{4}{3}}$ or $2^{1 \frac{1}{3}}$ or $2^{1.3}$	A1		
	Additional Guidance			
	$\sqrt[3]{16}=2^{4}$ not recovered			MOAO


Question	Answer	Mark	Comments

Alternative method 1 - based on a fraction of the number of males

$\frac{1}{4} \times 2 x(+) \frac{3}{8} \times x \text { or } \frac{7}{8} x$   where $x$ is the number of males	M1	$\begin{aligned} & \frac{1}{4} \times 2(+) \frac{3}{8}(\times 1) \\ & \text { or } \frac{7}{8} \end{aligned}$
$\frac{1}{4} \times 2 x+\frac{3}{8} \times x=84$   or $\frac{7}{8} x=84$   or $7 x=672$	M1dep	oe $\frac{1}{4} \times 2+\frac{3}{8}(\times 1)$ linked to 84 or $\frac{7}{8}$ linked to 84
$x=84 \div \text { their } \frac{7}{8}$   or $x=84 \times$ their $\frac{8}{7}$ or $x=96$	M1dep	oe dep on M1M1 $84 \div$ their $\frac{7}{8}$ or $84 \times$ their $\frac{8}{7}$ or 96
288	A1	

Alternative method 2 - based on a fraction of the number of females

$\frac{1}{4} \times y(+) \frac{3}{8} \times \frac{y}{2}$ or $\frac{7}{16} y$   where $y$ is the number of females	M1	$\frac{1}{4}(\times 1)(+) \frac{3}{8} \times \frac{1}{2}$   or $\frac{7}{16}$
$\frac{1}{4} \times y+\frac{3}{8} \times \frac{y}{2}=84$	oe	
or $\frac{7}{16} y=84$		
or $7 y=1344$	M1dep	$\frac{1}{4}(\times 1)+\frac{3}{8} \times \frac{1}{2}$ linked to 84   or $\frac{7}{16}$ linked to 84
$y=84 \div$ their $\frac{7}{16}$	M1dep	oe   dep on M1M1   84
or their $\frac{7}{16}$ or $84 \times 84 \times$ their $\frac{16}{7}$	or their $\frac{16}{7}$	
or $y=192$	A1	
288		


Question	Answer	Mark	Comments




Question	Answer	Mark	Comments


27	$\frac{4-0}{-1-0} \text { or }-4$	M1	oe	
	-1 $\div$ their -4 or $\frac{1}{4}$	M1	oe their -4 must be their gradient of OP	
	$y-4=\text { their } \frac{1}{4}(x--1)$   or $4=\text { their } \frac{1}{4}(-1)+c$	M1dep	oe dep on second   oe $c=4.25$	
	$y=\frac{1}{4} x+\frac{17}{4} \text { or } y=0.25 x+4.25$	A1	oe eg $y=0.25 x$   Accept $y=\frac{x+1}{4}$	
	Additional Guidance			
	An answer of $4 y=x+17$, with or without the correct answer seen			M1M1M1A0
	For A1, allow a mixture of fractions, decimals and mixed numbers			
	$y-y_{1}=m\left(x-x_{1}\right)$ stated, followed by $y-4=\frac{1}{4}(x--1)$ oe			M1M1M1


Question	Answer	Mark	Comments


Alternative method 1		
$\begin{aligned} & \frac{1}{3}(x) \pi(x) 5^{2}(x) 15 \text { or } 125 \pi \\ & \text { or }[392.5,392.8] \end{aligned}$	M1	oe
$\frac{r}{5}=\frac{15-9}{15}$ or $r=2$	M1	oe   $r$ is radius of small cone
$\frac{1}{3} \times \pi \times$ their $2^{2} \times(15-9)$ or $8 \pi$ or [25.12, 25.14]	M1dep	dep on 2nd M1
$117 \pi$	A1	Accept $\pi 117$ or $\frac{351 \pi}{3}$

## Alternative method 2

28

$\frac{1}{3}(x) \pi(x) 5^{2}(x) 15$ or $125 \pi$   or $[392.5,392.8]$	M1	oe
volume $s f=\left(\frac{15-9}{15}\right)^{3}$ or $\frac{8}{125}$	M1	oe
or $\left(\frac{15}{15-9}\right)^{3}$ or $\frac{125}{8}$	M1dep	Accept $1-\frac{8}{125}$ or $\frac{117}{125}$   their $125 \pi \times$ their $\frac{8}{125}$
or their $125 \pi \div$ their $\frac{125}{8}$   or $8 \pi$   or $[25.12,25.14]$	A1	Accept $\pi 117$ or $\frac{351 \pi}{3}$
$117 \pi$		

## Additional Guidance

Allow $[3.14,3.142]$ for $\pi$ for $M$ marks only	
Answer of 367.(...)	M1M1M1A0


Question	Answer	Mark	Comments	
$\sin 45=\frac{\sqrt{2}}{2}$ or $\frac{1}{\sqrt{2}}$ B1oe   or $\tan 45=1$ or $\frac{1}{1}$   stated or in correct place in expression or   implied by multiplier of 2 or 4				
29	$\sin 45=\frac{\sqrt{2}}{2}$ or $\frac{1}{\sqrt{2}}$ and $\tan 45=1$ or $\frac{1}{1}$ and $\tan 60=\sqrt{3}$ or $\frac{\sqrt{3}}{1}$	B1	oe   stated or in correct place in expression or implied by multiplier of 2 or 4 $\text { eg } \frac{2 \times \frac{1}{\sqrt{2}}-1}{4 \times \frac{\sqrt{3}}{1}}$	
	$\frac{\sqrt{2}-1}{4 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$	M1	oe rationalisation of their denominator$\text { eg } \frac{\frac{2}{\sqrt{2}}-1}{4 \sqrt{3}} \times \frac{4 \sqrt{3}}{4 \sqrt{3}}$	
	$\frac{\sqrt{6}-\sqrt{3}}{12}$	A1	oe in the form $\frac{\sqrt{6 a^{2}}-\sqrt{3 a^{2}}}{12 a}$ where $a$ is a positive integer eg $\frac{\sqrt{24}-\sqrt{12}}{24}$ (when $a=2$ )	
	Additional Guidance			
	$\frac{2 \times \frac{1}{\sqrt{2}}-1}{4 \sqrt{3}}$ or $\frac{\sqrt{2}-1}{4 \sqrt{3}}$ or $\frac{\sqrt{2}-1}{\sqrt{48}}$			B1B1
	$\frac{\sqrt{48}(\sqrt{2}-1)}{\sqrt{48} \sqrt{48}}$ or $\frac{\sqrt{48}(\sqrt{2}-1)}{48}$			B1B1M1
	$\frac{\sqrt{96}-\sqrt{48}}{48}$			B1B1M1A1
	B1B1 awarded, incorrect simplification, then correct method to rationalise			B1B1M1

