GCSE
Mathematics
Paper 3 Higher Tier
Mark scheme

8300
June 2017
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments
1	$\binom{-5}{-3}$	B1	
	Additional Guidance		

$\mathbf{2}$	1	B1		
	Additional Guidance			

3	$w=\frac{y}{2 x}$	B 1		
	Additional Guidance			

4	210°	B 1		
	Additional Guidance			

5	$200 \div 0.4$ or $200 \div 40 \times 100$ or $200=0.4 \times n$	M1	oe (Hea 200	
	500	A1		
	Additional Guidance			
	$\begin{aligned} & \text { eg } 200=40 \%, 100=20 \%, 500(=100 \%) \\ & 200=40 \%, 100=20 \%, 400=80 \%, 100+400 \\ & 200=40 \%, 100=20 \%, 400=80 \% \end{aligned}$			M1A1 M1A0 MOAO
	0.4:0.6 = 200 : 300			M1A0
	$100=20 \%, 300=60 \%$			M1A0
	$200 \div 0.4=500,500+200=700$ incorrect method			MOAO

Question	Answer	Mark	Comments

Alternative method 1

A includes 1 or B does not include 1	B1	oe Correct statement about 1 without contradiction
A does not include 6 or B includes 6	B1	oe Correct statement about 6 without contradiction

Alternative method 2

$1 \leq x<6$ or $1<x \leq 6$		oe eg $x \geq 1$ and $x<6$ for $1^{\text {st }}$ statement
or $1 \leq x$ and $1<x$ or $x<6$ and $x \leq 6$	M1	A includes 3 and B includes 18
or A is $1,2,3,4,5$ or B is $2,3,4,5,6$		A is $3, \ldots \quad 17$ and B is $4, \ldots 18$
A is $1,2,3,4,5$ and B is $2,3,4,5,6$	A1	oe eg $A=1$ to 5 and $B=2$ to 6

Additional Guidance

For 2 marks, must have clearly indicated both sets of integer solutions	M1A1
For 2 marks, must have clearly indicated both differences	B1B1
A could be 1 but not 6, B could be 6 but not 1	B1B1
A is $x=1$ and B is $x=6$	B1B1
A: $3,6,9,12,15$ and B: $6,9,12,15,18$	M1A0
Comment that inequality signs are switched with no other working	B0B0
' 1 and 6 don't appear in both' - need to be correctly linked to A and B	B0B0

7(b)	One correctly evaluated trial using $\begin{aligned} & (6,6.5]+(4,4.5) \\ & \text { or }(6,6.5)+(4,4.5] \end{aligned}$ or two values in the ranges given that work if correctly evaluated	M1	$\text { eg } 6.3+4.1=10.4$ eg 6.4, 4.2	
	One correctly evaluated trial using $(6,6.5)+(4,4.5)$ with an answer that rounds to 11	A1	$\text { eg } 6.4+4.2=10.6$ Ignore fw	
	Additional Guidance			
	$6.4+4.4=10.8(=11)$ do not need to show 11			M1A1
	$6.4999+4.4999=10.9998$			M1A1
	$6.5+4.4=10.9$			M1A0
	$4.5+6.2=10.7$			M1A0
	$6+4=10$			M0
	$6.5+4.5=11$			M0
	$6.4 \dot{9}+4.4 \dot{9}=11$			M0

$\mathbf{8 (a)}$	Could be true	B1	
	Additional Guidance		

Question	Answer	Mark	Comments

8(b)	Must be true	B1		
	Additional Guidance			

Question	Answer	Mark	Comments

Alternative method 1

$720+700$ or 1420 or $720+700-$ their 900 or 520	M1	oe
$\frac{520}{1420}$ or $\frac{26}{71}$	A1ft	oe fraction, decimal or percentage $0.36(6 \ldots)$ or 0.37 $36 .(6 \ldots) \%$ or 37% ft their part (a) Ignore fw

Alternative method 2

$720+700$ or 1420 or $\frac{1}{3} \times 720$ or 240 or $\frac{2}{5} \times 700$ or 280 or $240+280$ or 520	M1	oe
$\frac{520}{1420}$ or $\frac{26}{71}$	A1	oe fraction, decimal or percentage $0.36(6 \ldots)$ or 0.37 $36 .(6 \ldots) \%$ or 37% Ignore fw

Alternative method 3

$720+700$ or 1420 or $\frac{900}{1420}$ or $\frac{45}{71}$ or $\frac{\text { their } 900}{1420}$	M1	oe fraction, decimal or percentage $0.63 \ldots$ or 0.63 $63 .(\ldots) \%$ or 63%
$\frac{520}{1420}$ or $\frac{26}{71}$	A1ft	oe fraction, decimal or percentage $0.36(6 \ldots)$ or 0.37 $36 .(6 \ldots) \%$ or 37% ft their part (a) lgnore fw

Additional guidance is on the next page

Question	Answer	Mark	Comments
9(b) cont	$\frac{520}{1420}$ followed by incorrect simplification of fraction	M1A1	

Question	Answer	Mark	Comments

10(b)	$2 x+10=60$ or $2 x=60-10$ or $2 x=50$ or $x=25$	M1		
	$\begin{aligned} & 3 \times \text { their } 25-20 \text { or } 55 \\ & \text { or } 180-55 \text { or } 125 \end{aligned}$	M1dep	oe	
	$(y=) 125$ and bigger or (y is) 15 bigger	A1ft	oe ft their (a)	
	Additional Guidance			
	Note: A complete logical explanation of the effect of lines not being parallel eg w is smaller so $2 x+10$ is smaller so x is smaller so $3 x-20$ is smaller so y is bigger			M1M1A1
	$2 \times 25+10=60$			M1M0A0
	y is bigger ticked but no valid working			MOMOAO

Question	Answer	Mark	Comments

Alternative method 1

Any correct scaling of the ratio $5: 2$ eg 10 (:) 4 or 20 (:) 8 or 25 (:) 10	M1	oe
22.5 (:) 9 or 22.5 (red) or 30 (:) 12 or 12 (blue)	M1dep	oe
$31.5 \text { or } 31 \frac{1}{2} \text { or } \frac{63}{2}$	A1	

Alternative method 2

$9 \div 2$ or 4.5 or $30 \div 5$ or 6	M1	oe $2 \div 9$ or $0.22 \ldots$ $5 \div 30$ or $0.16 \ldots$ or 0.17
$5 \times$ their 4.5 or 22.5 or $7 \times$ their 4.5 or $2 \times$ their 6 or 12 or $7 \times$ their 6 or 42	M1dep	oe
31.5 or $31 \frac{1}{2}$ or $\frac{63}{2}$	A1	

Alternative method 3

$\frac{2}{7} \times$ purple $=$ blue	M1	oe $\frac{2}{7} \times$ purple $=9$
$\frac{5}{7} \times$ purple $=$ red	M1dep	
$9 \times \frac{7}{2} \times$ purple $=30$		
or $30 \times \frac{7}{5}$ or 42	oe	
31.5 or $31 \frac{1}{2}$ or $\frac{63}{2}$	A1	

Additional guidance is on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 11 \\ \text { cont } \end{gathered}$	Additional Guidance	
	$28+3.5=31.5$	M1M1A1
	$28+3.5$	M1M1A0
	31.5, answer 31	M1M1A1
	$31.5+42=73.5$	M1M1A0
	104	M1M0A0
	10, 4	M1M0A0
	$10+4$	M1M0A0
	'He has 2.5 times more red than blue'	M1M0A0
	2.5:1	M1M0A0
	2.5	MOMOAO
	28 on its own	MOMOAO

| 12 | $a=2$ | B1 | May be embedded |
| :--- | :--- | :--- | :--- | :--- |
| | $b=5$ | B1 | May be embedded |
| | Additional Guidance | | |
| | $\left(2 r^{5}\right)^{4}$ | $\left(r^{5}\right)^{4}$ | B1B1 |
| | B1 | | |
| $a=5$ and $b=2$ | B0 | | |

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

14	y is directly proportional to $\frac{1}{x}$	B 1	
	Additional Guidance		

15(a)	8	$B 1$		
	Additional Guidance			

15(b)	3	B1	Accept -3	
	Additional Guidance			

Question	Answer	Mark	Comments

16	Alternative method 1		
	$\begin{aligned} & \frac{25}{100} \times 18000 \text { or } 4500 \\ & \text { and } 18000-\text { their } 4500 \\ & \text { or } 18000 \times(1-0.25) \\ & \text { or } 18000 \times 0.75 \\ & \text { or } 13500 \\ & \text { or } 0.88 \end{aligned}$	M1	oe
	their $13500 \times(1-0.12)^{4}$ or their 13500×0.88^{4} their $13500 \times(1-0.12)^{3}$ or their 13500×0.88^{3} or 9199.87 or 9199.88 or 9199.90 or 9200	M1dep	oe Complete method for at least 4 years
	8095.88 or 8095.89 or 8095.90 or 8096 or 8096.00 or 8100 or 8100.00	A1	Correct money notation
	Alternative method 2		
	$\begin{aligned} & \frac{25}{100} \times 18000 \text { or } 4500 \\ & \text { and } 18000 \text { - their } 4500 \\ & \text { or } 13500 \\ & \text { or } 0.88 \end{aligned}$	M1	oe
	13500, 11 880, $10454 .(. .) 9199 ..(. .$.	M1dep	oe Complete method for at least 4 years
	8095.88 or 8095.89 or 8095.90 or 8096 or 8096.00 or 8100 or 8100.00	A1	Correct money notation

Additional guidance is on the next page

$\begin{gathered} 16 \\ \text { cont } \end{gathered}$	Additional Guidance	
	Condone eg £8095.88p	M1M1A1
	8095.887...	M1M1A0
	Note the values for successive calculations are $13500,11880,10454.4,9199.87(2), 8095.88(736)$ The values for successive savings are $4500,1620,1425.6,1254.52(8), 1103.98$	
	For method marks allow rounding or truncating of their totals or savings	

Question	Answer	Mark	Comments

17	Alternative method 1		
	1 mile per minute or 60 miles per hour or 0.15 (hours) or 1.6 (hours) or $1 \frac{36}{60}$ (hours)	B1	
	$9 \div 50$ or 0.18	M1	oe
	$70 \times 1 \frac{36}{60}$ or 70×1.6 or 112	M1	oe
	their $112 \div 40$ or 2.8	M1dep	dep on 2nd M1
	2.98 or 2.8 and $(3-0.18=) 2.82$ or 0.18 and $(3-2.8=) 0.2$	A1	Ignore fw
	Alternative method 2		
	1 mile per minute or 60 miles per hour or 0.15 (hours) or 1.6 (hours) or $1 \frac{36}{60}$ (hours)	B1	
	$9 \div 50$ or 0.18	M1	oe
	$70 \times 1 \frac{36}{60}$ or 112 or 70×1.6 or 112	M1	
	$40 \times(3-$ their 0.18$)$ or 112.8	M1dep	dep on 1st M1
	112.8 and 112	A1	Ignore fw

Alternative method 3 and additional guidance is on the next page

Question	Answer	Mark	Comments

Additional guidance continues on the next page

19 cont Answer of 34 with no working 'their 78 ' must come from an attempt to calculate $\frac{180-24}{2}$	B0B0M1A1	
	Angles must be clearly identified eg $D=24$ 24 (unless shown on diagram)	B1

20	522.5 or 527.5	B1	oe Accept 527.499(999...)	
	77.5 or 78.5	B1	oe Accept 78.499(999...)	
	527.5-77.5	M1	their max total - their min Ben their max total must be $(525,530$] their min Ben must be $[77,78$) Accept $527.4 \dot{9}$ or 527.499 (999...) for 527.5	
	450 and Yes with correct working seen	A1	Accept [449.999, 450]	
	Additional Guidance			
	$525-78=447$ and yes			BOBOMOAO
	$\begin{aligned} & 525=520 \text { to } 530 \\ & 78=77.5 \text { to } 78.5 \\ & 520-78.5=441.5 \\ & 520-77.5=442.5 \\ & 530-78.5=451.5 \\ & 530-77.5=452.5 \end{aligned}$ Answer No			B0
				B1
				M1
				A0

21	$-2.5<x<1$	B1		
	Additional Guidance			

Question	Answer	Mark	Comments

22	Alternative method 1		
	Second differences 8	M1	Implied by $4 n^{2}$
	Any three values from $\begin{array}{llll} -2 & 1 & 4 & 7 \end{array}$	M1dep	
	$4 n^{2}+3 n-5$	A1	oe Allow $a=4 \quad b=3 \quad c=-5$
	Alternative method 2		
	Any 3 of $\begin{aligned} & a+b+c=2 \\ & 4 a+2 b+c=17 \\ & 9 a+3 b+c=40 \\ & 16 a+4 b+c=71 \end{aligned}$	M1	Using $a n^{2}+b n+c$
	Any 2 equations in 2 unknowns eg $3 a+b=15$ $5 a+b=23$ $7 a+b=31$ $8 a+2 b=38$ $12 a+2 b=54$ $15 a+3 b=69$	M1dep	Correctly eliminates the same letter using two different pairs of equations
	$4 n^{2}+3 n-5$	A1	oe Allow $a=4 \quad b=3 \quad c=-5$

Alternative method 3 and additional guidance is on the next page

$\begin{gathered} 22 \\ \text { cont } \end{gathered}$	Alternative method 3				
	Second differences 8 $a=4$ or $c=2-7$ or -5	M1	Using $a n^{2}+b n+c$		
	$3 a+b=17-2$ and substitutes their a	M1dep	oe eg $b=3$ May also see $a+b+c=2$ used to work out c		
	$4 n^{2}+3 n-5$	A1	oe Allow $a=4 \quad b=3 \quad c=-5$		
	Additional Guidance				
	Sequence (-5) 2 17 40 71 $1^{\text {st }}$ differences are (7) 15 23 31 $2^{\text {nd }}$ differences are 8 8 8				

Question	Answer	Mark	Comments

24	Draws a tangent at 1 second	M1	
	Their gradient at 1 second	A1ft	Must see a tangent on the graph ft their tangent ± 0.2 tolerance on vertical reading ± 0.1 tolerance on horizontal reading
	Additional Guidance		

Question	Answer	Mark	Comments

Alternative method 1

$17^{2}-(16 \div 2)^{2}$		Correct use of Pythagoras' theorem
or $17^{2}-8^{2}$		
or $289-64$	M1	$8^{2}+15^{2}=17^{2}$ or $64+225=289$
$\sqrt{17^{2}-(16 \div 2)^{2}}(=15)$	A1	Correct use of Pythagoras' theorem using a square root
or $\sqrt{17^{2}-8^{2}}(=15)$		
or $\sqrt{289-64}(=15)$		

Alternative method 2

$\sin E=\frac{8}{17}$ or $\cos A=\frac{8}{17}$
or $E=28 .(\ldots)$ or $A=61.9(\ldots)$ or 62
25(a)
and
$\cos 28 .(\ldots)=\frac{E M}{17}$
or $\tan 28 .(\ldots)=\frac{8}{E M}$
or $\sin 61.9(\ldots)=\frac{E M}{17}$
or $\tan 61.9(\ldots)=\frac{E M}{8}$
$17 \cos 28 .(\ldots)$ or $8 \div \tan 28 .(\ldots)$
or $17 \sin 61.9(\ldots)$ or $8 \tan 61.9(\ldots)$
M1

Additional Guidance	
$8,15,17$ on their own	M0A0
$E M^{2}=289-64=225, E M=15$	M1A0

Question	Answer	Mark	Comments

25(b)	Alternative method 1		
	$30^{2}+(16 \div 2)^{2}$ or $30^{2}+8^{2}$ or 964	M1	oe
	$\sqrt{\text { their } 964}$ or $2 \sqrt{241}$ or [31, 31.1]	M1dep	oe CM
	$\tan x=\frac{15}{\text { their }[31,31.1]}$	M1dep	$\begin{aligned} & \text { oe eg } 90-\tan ^{-1} \frac{\text { their }[31,31.1]}{15} \\ & \text { dep on M1 M1 } \end{aligned}$
	[25.7, 26]	A1	
	Alternative method 2		
	$30^{2}+17^{2}$ or 1189	M1	oe
	$\begin{aligned} & \sqrt{\text { their } 1189} \\ & \text { or }[34.4,34.5] \end{aligned}$	M1dep	oe CE
	$\sin x=\frac{15}{\text { their }[34.4,34.5]}$	M1dep	$\begin{aligned} & \text { oe eg } 90-\cos ^{-1} \frac{15}{\text { their }[34.4,34.5]} \\ & \text { or } \frac{\sin x}{15}=\frac{\sin 90}{\text { their }[34.4,34.5]} \\ & \text { dep on M1 M1 } \end{aligned}$
	[25.7, 26]	A1	

$\begin{gathered} 25(b) \\ \text { cont } \end{gathered}$	Alternative method 3		
	$30^{2}+(16 \div 2)^{2}$ or 964 or $30^{2}+17^{2}$ or 1189	M1	oe
	$\sqrt{\text { their } 964}$ or $2 \sqrt{241}$ or [31, 31.1] or $\sqrt{\text { their } 1189}$ or [34.4, 34.5]	M1dep	oe $C M$ CE
	$\cos x=\frac{\text { their }[31,31.1]}{\text { their }[34.4,34.5]}$	M1dep	$\begin{aligned} & \text { oe eg } 90-\sin ^{-1} \frac{\text { their }[31,31.1]}{\text { their }[34.4,34.5]} \\ & \text { dep on } \mathrm{M} 1 \mathrm{M} 1 \end{aligned}$
	[25.7, 26]	A1	
	Alternative method 4		
	$17^{2}-(16 \div 2)^{2}$ or 225 or $30^{2}+(16 \div 2)^{2}$ or 964 or $30^{2}+17^{2}$ or 1189	M1	oe $E M^{2}$ $C M^{2}$ $C E^{2}$
	$\begin{aligned} & \cos x= \\ & \frac{\text { their } 964+\text { their } 1189-\text { their } 225}{2 \times \sqrt{\text { their } 964} \times \sqrt{\text { their } 1189}} \end{aligned}$	M1dep	oe
	$\begin{aligned} & \cos ^{-1} \\ & \frac{\text { their } 964+\text { their } 1189-\text { their } 225}{2 \times \sqrt{\text { their } 964} \times \sqrt{\text { their } 1189}} \end{aligned}$	M1dep	oe dep on M1 M1
	[25.7, 26]	A1	
		ditional	Guidance

Question	Answer	Mark	Comments
26	$\begin{aligned} & 10(3 x+1) \\ & \text { or } 9 x \\ & \text { or } x(9-3 x-1) \text { or } x(8-3 x) \\ & \text { or }(10-x)(3 x+1) \\ & \text { or } x(3 x+1) \\ & \text { or }(10-x)(9-3 x-1) \end{aligned}$	M1	oe One correct area expression in x May be implied
	$\begin{aligned} & 10(3 x+1)+x(9-3 x-1) \\ & \text { or } 9 x+(10-x)(3 x+1) \\ & \text { or }(10-x)(3 x+1)+x(9-3 x-1) \\ & +x(3 x+1) \\ & \text { or } 10 \times 9-(10-x)(9-3 x-1) \end{aligned}$	M1dep	oe Fully correct unsimplified expression for area
	$\begin{aligned} & 30 x+10+9 x-3 x^{2}-x \\ & \text { or } 9 x+30 x+10-3 x^{2}-x \\ & \text { or } 30 x+10-3 x^{2}-x+9 x-3 x^{2}-x \\ & +3 x^{2}+x \\ & \text { or } 90-90+30 x+10+9 x-3 x^{2}-x \\ & \text { or } 38 x+10-3 x^{2} \end{aligned}$	M1dep	oe dep on M1 M1 Full expansion All brackets removed
	$3 x^{2}-38 x+55(=0)$	A1	oe 3-term equation
	$\begin{aligned} & (3 x-5)(x-11) \\ & \frac{--38 \pm \sqrt{(-38)^{2}-4 \times 3 \times 55}}{2 \times 3} \\ & \text { or } \frac{38 \pm \sqrt{1444-660}}{6} \\ & \text { or } \frac{38 \pm \sqrt{784}}{6} \end{aligned}$	M1	oe their 3-term quadratic factorised correctly or correct substitution in formula for their 3-term quadratic equation
	$\frac{5}{3}$ or $1 \frac{2}{3}$ or $1.66(6 \ldots)$ or 1.67	A1	oe $x=11$ included is A0
	Additional Guidance		
	$3 x^{2}=38 x-55$		M1M1M1A1

Question	Answer	Mark	Comments

Alternative method 1 - completing the square

$\left(x+\frac{1}{2}\right)^{2}+\ldots$	M1	
$\left(x+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}+1$	A1	oe
or $\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}+1$		
or $\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$	A1	oe
$\left(x+\frac{1}{2}\right)^{2} \geq 0$ and $\frac{3}{4}>0$		
and always positive		

Alternative method 2 - real roots

27

$\frac{-1 \pm \sqrt{1^{2}-4 \times 1 \times 1}}{2 \times 1}$	M1	oe
or a correct sketch showing a quadratic curve with turning point above the x-axis	A1	oe
States no values on x-axis	A1	oe
States no values on x-axis		
and (minimum value $=$) $\frac{3}{4}$	M1	
Alternative method $3-$ Calculus		
$2 x+1=0$	A1	
$x=-\frac{1}{2}$		
(minimum value $=$) $\frac{3}{4}$		

$\begin{gathered} 27 \\ \text { cont } \end{gathered}$	Alternative method 4 - Explanation method			
	$\begin{aligned} & \text { If } x \geq 0 \text {, } \\ & x^{2} \geq 0 \text { and } x \geq 0(1>0) \\ & \text { so } x^{2}+x+1>0 \end{aligned}$ and $\begin{aligned} & \text { If }-1<x<0 \\ & x^{2}>0 \text { and } x+1>0 \\ & \text { so } x^{2}+x+1>0 \end{aligned}$ and If $x \leq-1$ $x^{2}>x \text { and } x^{2}+x>0$ so $x^{2}+x+1>0$		Accept $x>0$ for $x \geq 0$ B2 for two correct statements B1 for one correct statement	
		B3		
		ion	Guidance	
	Calculating pairs of coor			MOAOAO

