GCSE
 Mathematics

8300/2 - Paper 2 Higher Tier
Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep \quad A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments

$\mathbf{1}$	segment	B1		
	Additional Guidance			

| $\mathbf{2}$ | 6×10^{7} | B 1 | |
| :--- | :--- | :--- | :--- | :--- |
| | Additional Guidance | | |
| | | | |

4	400%	B1		
	Additional Guidance			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

Alternative method 1

Any one of

$60000 \div 420000$ or $0.14 \ldots$
or $14 .(\ldots) \%$ or $\frac{1}{7}$
or
$480000 \div 420000$ or $1.14 \ldots$
or $114 .(\ldots) \%$ or $\frac{8}{7}$
or
$420000 \div 60000$ or 7
or
$420000 \div 480000$ or 0.875
or 87.5% or $\frac{7}{8}$
or
$60000 \div 540000$ or $0.11 \ldots$ or
6
11.(...)\% or $\frac{1}{9}$
or
$540000 \div 60000$ or 9
Any one of
$60000 \div 480000$ or 0.125
or 12.5% or $\frac{1}{8}$
or
$540000 \div 480000$ or 1.125
or 112.5% or $\frac{9}{8}$
or
$480000 \div 60000$ or 8
or
$480000 \div 540000$ or $0.88 \ldots$
or 0.89 or $88 .(\ldots) \%$ or 89% or $\frac{8}{9}$
must be a matching pair (could be different forms) to award M2 (see A1 for list of matching pairs)
oe
eg $60000: 480000$ or $1: 8$
or
$540000: 480000$ or $9: 8$

Mark scheme continues on the next page

Question	Answer	Mark	Comments
$\begin{gathered} 6 \\ \text { cont } \end{gathered}$	$\frac{1}{7}$ and $\frac{1}{8}$ and No or $\frac{8}{7}$ and $\frac{9}{8}$ and No or $0.14 \ldots$ and 0.125 and No or 14.(...)\% and 12.5\% and No or 1.14... and 1.125 and No or 114.(...)\% and 112.5\% and No or 7 and 8 and No or $\frac{7}{8}$ and $\frac{8}{9}$ and No or $\frac{1}{9}$ and $\frac{1}{8}$ and No or 9 and 8 and No or $0.11 \ldots$ and 0.125 and No or 11.(...)\% and 12.5\% and No or 0.875 and $0.88 \ldots$ or 0.89 and No or 87.5\% and 88.(...)\% or 89\% and No	A1	oe eg $1: 7$ and $1: 8$ and No

Question	Answer	Mark	Comments

$\begin{gathered} 6 \\ \text { cont } \end{gathered}$	Alternative method 2		
	No and any one of $\frac{60000}{420000} \times 480000 \text { and }$ [67200, 68640] or $\frac{60000}{480000} \times 540000 \text { and } 67500$ or $\frac{60000}{480000} \times 420000 \text { and } 52500$ or $\frac{60000}{540000} \times 480000 \text { and }$ $\text { [52 800, } 53 \text { 334] }$ or $\frac{420000}{480000} \times 540000 \text { and } 472500$ or $\frac{480000}{420000} \times 480000 \text { and }$ [547 200, 548 640] or $\frac{480000}{540000} \times 480000 \text { and }$ [422 400, 427 200] or $\frac{540000}{480000} \times 420000 \text { and } 472500$	B3	oe B2 any one of the calculations B1 any one of the fractions oe for equivalent fractions, decimals and percentages see Alternative method 1

Additional guidance continues on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 6 \\ \text { cont } \end{gathered}$	Additional Guidance	
	In Alt 1, for M2 the matching pair do not have to be in comparable form eg 14.3% and $\frac{1}{8}$ and No	M1M1A0
	For comparable fractions, they must be in their lowest terms or have the same numerators or the same denominators for the A1 eg Alt $1 \frac{60000}{420000}$ and $\frac{60000}{480000}$ and No	M1M1A1
	For comparable ratios, they must be in their lowest terms or have the same LH sides or the same RH sides for the A1 eg Alt $160000: 420000$ and $60000: 480000$ and No	M1M1A1
	If working with percentages, condone absence of \% symbol eg Alt 114 and 12.5 and No	M1M1A1
	Both are increases of 60000 and it is then over different amounts so cannot be the same percentage	MOMOAO

Question	Answer	Mark	Comments

Two different probabilities from		oe		
$\frac{15}{20}$ or 0.75 or 75%				
or				
$\frac{22}{30}$ or $0.73 \ldots$ or $73 .(\ldots) \%$				
or for one correct probability				
$\frac{17}{40}$ or 0.425 or 0.43				
7(a) 42.5% or 43%				
or				
$\frac{54}{90}$ or 0.6 or 60%				
or				
$\frac{37}{50}$ or 0.74 or 74%				
or				
$\frac{32}{60}$ or $0.53 \ldots$ or $53 .(\ldots) \%$				
or				
$\frac{39}{70}$ or $0.557 \ldots$ or 0.56				
or $55.7 \ldots \%$ or 56%			\quad B2	
:---				

Additional guidance continues on the next page

Question	Answer	Mark	Comments

$7(a)$cont	Additional Guidance	
	Accept $\frac{108}{180}$ as one of the probabilities	
	Mark the answer line if it has two answers ignoring any incorrect probabilities in the working lines	
	Ignore any incorrect cancelling or change of form (fraction, decimal or percentage)	
	If the answer line only has one answer, check the working lines for a second answer for B2. Ignore any extra probabilities, unless incorrect, in which case award B1 max eg Working lines $\frac{15}{20}$ Answer line $\frac{54}{90}$ eg Working lines $\frac{15}{20}, \frac{5}{15}$ Answer line $\frac{54}{90}$	B2 B1
	If the answer line is blank, check the working lines for answers for B1 or B2. Ignore any extra probabilities, unless incorrect, in which case award B1 max eg Working lines $\frac{15}{20}, \frac{22}{30}, \frac{54}{90}$ Answer line blank eg Working lines $\frac{15}{20}, \frac{5}{15}, \frac{54}{90}$ Answer line blank	B2 B1
	Probabilities must not be given as ratios	
	Do not accept the average of the given probabilities as answer	

Question	Answer	Mark	Comments

7(b)	Alternative method 1 (ft their part (a))			
	Their probability with the greater number of trials and valid reason eg More throws	B1ft	ft their two different probabilities from part (a) both probabilities must have a denominator based on throws	
	Alternative method 2 (independent of part (a))			
	$\begin{aligned} & \frac{54}{90} \\ & \text { and } \\ & \text { valid reason eg Total throws } \end{aligned}$	B1	oe	
	Additional Guidance			
	Accept any unambiguous indication of their probability eg the day			
	Using ratios			B0
	Ignore any non-contradictory statements			
	60\% and It's for all three days			B1
	$\frac{54}{90}$ and It takes into account more throws			B1
	$\frac{17}{40}$ (with $\frac{22}{30}$ also in (a)) and Because he threw it more on Wednesday			B1ft
	$\frac{54}{90}$ and Shows the overall probability			B1
	$\frac{54}{90}$ and Probability over total throws			B1
	$\frac{54}{90}$ (with Wednesday probability in (a)) and It's the average total days, not just Wednesdays			B1ft

Additional guidance continues on the next page

Question	Answer	Mark	Comments

7(b) cont	Correct ft probability or $\frac{54}{90}$ and It's more reliable	B0
	$\frac{54}{90}$ and There's a lot of data	B0
	$\frac{54}{90}$ and He throws 90 times	B0
	Correct ft probability or $\frac{54}{90}$ and More hits	B0

8	Alternative method 1		
	22.5(0) and 4 or 27 and 8 or 31.5(0) and 12 or 36 and 16 or 40.5(0) and 20 or 45 and 24 or 30:16 or 45 : 24	M1	
	45 and 24 chosen	A1	eg 45 : 24 is the final ratio seen
	6	A1	

Mark scheme and additional guidance continues on the next page

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

| 9(a) | 8.35 and 8.45 in the correct order | B1 8.35 on the left or 8.45 on the right
 or 8.45 and 8.35 in the wrong order
 accept $8.44 \dot{9}$ for 8.45 | |
| :--- | :--- | :---: | :---: | :---: |
| | Additional Guidance | | |

9(b)	41.75 and 42.25	B1ft	correct or ft th from (a) their 8.35 mu their 8.45 mu correct order accept 42.24	values $\begin{aligned} & (8.3,8.4] \\ & (8.4,8.5] \end{aligned}$
	Additional Guidance			
	(8.3, 8.4] does not include 8.3 but does include 8.4 ($8.4,8.5$] does not include 8.4 but does include 8.5			
	Answer of 8.35 and 8.44 in part (a) leading to 41.75 and 42.2			B1ft
	Answer of 8 and 9 in part (a) leading to 40 and 45			B0ft

Question	Answer	Mark	Comments

10	Alternative method 1		
	$\frac{4}{3} \pi \times 30^{3}$ or 36000π or [112 757, 113 112] or $\frac{1}{2} \times \frac{4}{3} \pi \times 30^{3}$ or 18000π or [55 954, 56 839]	M1	oe allow $1.33 \ldots$ for $\frac{4}{3}$ allow $0.66 \ldots$ or 0.67 for $\frac{2}{3}$
	their [112 757, 113112$] \div 4000$ or 9π or $28 .(\ldots)$ or their [55 954, 56 839] $\div 4000$ or $\frac{9 \pi}{2}$ or [13.9, 14.21] or their [112 757, 113112$] \div(4000 \times$ $60)$ or $\frac{3 \pi}{20}$ or [0.46, 0.4713] or their [55 954, 56839$] \div(4000 \times 60)$ or $\frac{3 \pi}{40}$ or $0.23 \ldots$ or 0.24	M1dep	
	[13.9, 14.21] and Yes or $0.23 \ldots$ or 0.24 and Yes	A1	

Mark scheme and additional guidance continues on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 10 \\ \text { cont } \end{gathered}$	Alternative method 2			
	$\frac{4}{3} \pi \times 30^{3}$ or 36000π or [112 757, 113 112] or $\frac{1}{2} \times \frac{4}{3} \pi \times 30^{3}$ or 18000π or [55 954, 56 839]	M1	oe allow $1.33 \ldots$ for $\frac{4}{3}$ allow $0.66 \ldots$ or 0.67 for $\frac{2}{3}$	
	4000×15 or 60000	M1		
	[55 954, 56839] and 60000 and Yes	A1		
	Alternative method 3			
	$\frac{4}{3} \pi \times 30^{3}$ or 36000π or [112 757, 113 112] or $\frac{1}{2} \times \frac{4}{3} \pi \times 30^{3}$ or 18000π or [55 954, 56 839]	M1	oe allow $1.33 \ldots$ for $\frac{4}{3}$ allow $0.66 \ldots$ or 0.67 for $\frac{2}{3}$	
	$\begin{aligned} & \text { their }[112757,113112] \div 15 \\ & \text { or } 2400 \pi \text { or }[7517,7541] \\ & \text { or } \\ & \text { their }[55954,56839] \div 15 \\ & \text { or } 1200 \pi \text { or }[3730,3790] \end{aligned}$	M1dep		
	[3730, 3790] and Yes	A1		
		itional g	idance	
	Do not award A1 if incorrect conve	of $\frac{1}{4}$ ho	seen	

| Question Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

11(a)	$\frac{1}{3}$ or $\frac{2}{6}$ or $0.33 \ldots$ or $33 .(\ldots) \%$ on each top branch and $\frac{2}{3}$ or $\frac{4}{6}$ or $0.66 \ldots$ or 0.67 or 66.(...)\% or 67% on each bottom branch	B1	accept any equivalent fraction, decimal or percentage	
	Additional Guidance			
	Decimals must have at least 2 decimal places so do not accept 0.3 or 0.6 or 0.7			
	Only accept the percentages shown, do not accept 30\% or 60\%			
	Ignore working around the edge of the diagram			
				B1

Question
Answer Mark Comments 11(b) $\frac{1}{9}$ or $0.11 \ldots$ or $11 .(\ldots) \%$ B1 Additional Guidance Ignore probability words such as 'unlikely' or 'evens' Accept equivalent answers eg $\frac{2}{18}, \frac{3}{27}, 0.1$ Do not accept 0.1 or 10%

11(c)	Alternative method 1 Probabilities on branches in (a) all correct		
	$\frac{1}{3} \times \frac{2}{3} \text { or } \frac{2}{3} \times \frac{1}{3} \text { or } \frac{2}{9}$	M1	oe accept $0.33 \ldots$ for $\frac{1}{3}$ accept $0.66 \ldots$ or 0.67 for $\frac{2}{3}$
	$\frac{4}{9}$ or 0.44... or 44.(...)\%	A1	
	Alternative method 2 Probabilities on branches in (a) all correct		
	$1-\left(\frac{1}{3} \times \frac{1}{3}\right)-\left(\frac{2}{3} \times \frac{2}{3}\right)$	M1	oe accept $0.33 \ldots$ for $\frac{1}{3}$ accept $0.66 \ldots$ or 0.67 for $\frac{2}{3}$
	$\frac{4}{9}$ or 0.44... or 44.(...)\%	A1	

Mark scheme continues on the next page

Question	Answer	Mark	Comments

11(c) cont	Alternative method 3 Probabilities on branches in (a) not all correct		
	$\frac{1}{3} \times \text { their } \frac{2}{3}$ where their $\frac{2}{3}$ must be for 2 nd dice 3 or more or their $\frac{2}{3} \times$ their $\frac{1}{3}$ where their $\frac{2}{3}$ must be for 1 st dice 3 or more and their $\frac{1}{3}$ must be for 2nd dice less than 3	M1	oe accept $0.33 \ldots$ for $\frac{1}{3}$ accept $0.66 \ldots$ or 0.67 for $\frac{2}{3}$ their fractions must be between 0 and 1
	$\frac{4}{9}$ or $0.44 \ldots$ or 44.(...)\%	A1ft	ft their fractions
	Alternative method 4 Probabilities on branches in (a) not all correct		
	$1-\left(\frac{1}{3} \times \frac{1}{3}\right)-\left(\text { their } \frac{2}{3} \times \text { their } \frac{2}{3}\right)$ where their $\frac{2}{3}$ must be for 1 st dice 3 or more and their $\frac{2}{3}$ must be for 2nd dice 3 or more	M1	accept $0.33 \ldots$ for $\frac{1}{3}$ accept $0.66 \ldots$ or 0.67 for $\frac{2}{3}$ their fractions must be between 0 and 1
	$\frac{4}{9}$ or 0.44... or 44.(...)\%	A1ft	ft their fractions

Additional guidance continues on the next page

Question	Answer	Mark	Comments

11(c) cont	Additional Guidance	
	If probabilities on branches in (a) are all $\frac{1}{3}$ 0.6 or 0.7	Ignore any incorrect cancelling or change of form (fraction, decimal or percentage)
	$\frac{1}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{1}{3}$	MOA0
	$\frac{1}{3} \times \frac{2}{3}$ and $\frac{1}{3} \times \frac{1}{3}$ without selecting $\frac{1}{3} \times \frac{2}{3}$ is choice	MOA0

12(a)	$\frac{1}{2}$ or 0.5	B1	oe eg $\frac{4}{8}$ or $\frac{2}{4}$	
	Additional Guidance			
	1:2 or 50\%			B0
	$\frac{1}{2} x$			B0
	$y=0.5 x+2$			B0
	0.5			B0
	Ignore units			

| Question Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Question	Answer	Mark	Comments

13	Alternative method 1		
	Any correct factorisation of the numerator or the denominator	M1	eg $8\left(x^{2}-1\right)$ or $4(x+1)$ or $2\left(4 x^{2}-4\right)$ or $2(2 x+2)$ or $4\left(2 x^{2}-2\right)$ or $(4 x+4)(2 x-2)$ or $(4 x-4)(2 x+2)$ or $(8 x+8)(x-1)$ or $(8 x-8)(x+1)$ or $-2\left(-4 x^{2}+4\right)$ does not need to be seen in a fraction may be implied eg $\frac{2 x^{2}-2}{x+1}$ or $\frac{4 x^{2}-4}{2 x+2}$
	Correct fraction with a common algebraic factor in the numerator and the denominator	A1	eg $\frac{8(x+1)(x-1)}{4(x+1)}$ or $\frac{2(2 x+2)(2 x-2)}{2(2 x+2)}$ or $\frac{2(x+1)(x-1)}{(x+1)}$ or $\frac{4(x+1)(2 x-2)}{4(x+1)}$ or $\frac{(4 x+4)(2 x-2)}{4 x+4}$
	$2 x-2$ or $a=2$ and $b=-2$ with M1A1 scored	A1	

Mark scheme and additional guidance continues on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 13 \\ \text { cont } \end{gathered}$	Alternative method 2			
	$4 a x^{2}+4 a x+4 b x+4 b$	M1	oe expands $(a x+b)(4 x+4)$ to 4 terms with at least 3 terms correct	
	Any 2 of $4 a=8 \quad 4 b=-8 \quad 4 a+4 b=0$	A1		
	$a=2 \text { and } b=-2$ and shows that third equation is satisfied with M1A1 scored	A1		
	Additional Guidance			
	M1 is implied by the first A1 eg $\frac{8(x+1)(x-1)}{4(x+1)}$			M1A1
	$1\left(8 x^{2}-8\right)$ or $-1\left(8-8 x^{2}\right)$ etc			M0
	$2 x-2$ without M1A1 scored			MOAOAO
	M1A1 scored and $2 x-2$ followed by attempt to solve $2 x-2=0$			M1A1A1
	M1A1 scored and $2 x-2$ followed by $2(x-1)$			M1A1A1
	M1A1 scored followed by $2(x-1)$ but $2 x-2$ not seen			M1A1A0

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

15	Men had more consistent scores than women	B1		
	Additional Guidance			

16(a)	2400×3.8 or $\frac{m}{3.8}=2400$ or $\frac{m}{2400}=3.8$	M1	oe equation allow mass for m allow any letter apart from v or d
	9120	A1	
	Additional Guidance		

16(b)	$\begin{aligned} & \pi r^{2} h=3.8 \\ & \text { or } \\ & \pi \times 0.5^{2} \times h \text { or } 0.25 \pi h \\ & \text { or }[0.78,0.79] h \\ & \text { or } \\ & 3.8 \div\left(\pi \times 0.5^{2}\right) \text { or } 3.8 \div 0.25 \pi \\ & \text { or } 3.8 \div[0.78,0.79] \end{aligned}$	M1	$\text { oe eg } \pi r^{2}=\frac{3.8}{h}$	
	[4.8, 4.841]	A1		
	Additional Guidance			
	$\pi 0.5^{2} h$			M1

Question	Answer	Mark	Comments

17(a)	$[2.9,3]$	$B 1$		
	Additional Guidance			

17(b)	$[1.4,1.6]$	$B 1$		
	Additional Guidance			

17(c)	$\begin{aligned} & \frac{[4.55,4.65]-0}{3.5-[1.5,1.6]} \text { or } \frac{[4.55,4.65]}{[1.9,2]} \\ & \text { or } \frac{[4.55,4.65]-0}{[1.5,1.6]-3.5} \text { or } \frac{[4.55,4.65]}{[-2,-1.9]} \\ & \text { or }[-2.45,-2.275] \end{aligned}$	M1	oe	
	[2.275, 2.45]	A1		
	Additional Guidance			

18	5 and 6 with no incorrect evaluation seen for 3^{5} or 3^{6} or 5 and 6 with no incorrect evaluation seen for $\sqrt[5]{300}$ or $\sqrt[6]{300}$	B1	5 and 6 in either o allow any evaluati rounded to 2 sf or	
	Additional Guidance			
	5 and 6 with either 3^{5} or 3^{6} evaluated incorrectly			B0
	3^{5} or 3^{6}			B0
	243 and 729			B0
	$\begin{array}{ll} 3^{5}=243 & \text { Allow } 240 \text { or } 200 \text { (with no incorrect value seen) } \\ 3^{6}=729 & \text { Allow } 720 \text { or } 730 \text { or } 700 \text { (with no incorrect value seen) } \end{array}$			
	$\begin{aligned} & \sqrt[5]{300}=3.1(2 \ldots) \text { or } 3.13 \\ & \sqrt[6]{300}=2.5(8 \ldots) \text { or } 2.59 \text { or } 2.6 \end{aligned}$			

Question	Answer	Mark	Comments

19	Alternative method 1 Using one half of the isosceles triangle		
	$\begin{aligned} & \text { (base angle }=\text {) } 35 \\ & \text { or (top angle }=\text {) } 55 \end{aligned}$	B1	may be on diagram
	$\begin{aligned} & \cos (\text { their } 35)=\frac{6}{x} \\ & \text { or } \\ & \sin (\text { their } 55)=\frac{6}{x} \\ & \text { or } \\ & 6^{2}+(6 \tan (\text { their } 35))^{2} \end{aligned}$	M1	$\text { oe eg } \frac{\sin 90}{x}=\frac{\sin (\text { their } 55)}{6}$ any letter their 35 must be acute their 55 must be acute
	$\frac{6}{\cos (\text { their } 35)}$ or $\frac{6}{\sin (\text { their } 55)}$ or $\sqrt{6^{2}+(6 \tan (\text { their } 35))^{2}}$ or 7.3(2...)	M1dep	oe
	[50.6, 50.65]	A1ft	ft BOM2 with evaluation of $36+2 \times$ their $7.3(2 \ldots)$

Mark scheme and additional guidance continues on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 19 \\ \text { cont } \end{gathered}$	Alternative method 2 Using the isosceles triangle			
	$\begin{aligned} & (\text { base angle }=) 35 \\ & \text { or (top angle }=\text {) } 110 \end{aligned}$	B1	may be on diagram	
	$\frac{x}{\sin (\text { their } 35)}=\frac{12}{\sin (\text { their } 110)}$ or $12^{2}=x^{2}+x^{2}-2 \times x \times x \times \cos$ (their 110) or $x^{2}=x^{2}+12^{2}-2 \times x \times 12 \times \cos$ (their 35)	M1	oe any letter their 35 must be acute their 110 cannot be 125	
	$\left.\frac{12}{\sin (\text { their } 110)} \times \sin \text { (their } 35\right)$ or $\sqrt{\frac{12^{2}}{2-2 \cos (\text { their } 110)}}$ or $\frac{12^{2}}{2 \times 12 \times \cos (\text { their } 35)}$ or 7.3(2...)	M1dep	oe	
	[50.6, 50.65]	A1ft	ft BOM2 with evaluation of $36+2 \times$ their 7.3(2...)	
	Additional Guidance			
	Allow B1 even if the angle is not subsequently used			
	Alt 2 Top angle 90			MOMOAO
	Answer [50.6, 50.65] (possibly from scale drawing)			B1M1M1A1

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

21(a)	Alternative method 1			
	$80^{2}+60^{2}-2 \times 80 \times 60 \times \cos 75$ or $6400+3600-9600 \cos 75$ or 7515.(...)	M1	oe	
	$\sqrt{\text { their 7515.(...) }}$ or [86.6, 86.7] or 87	M1dep		
	[86.6, 86.7] and Liz or 87 and Liz	A1	accept 86 and Liz or 90 and Liz with full method seen	
	Alternative method 2			
	$80^{2}+60^{2}-2 \times 80 \times 60 \times \cos 75$ or $6400+3600-9600 \cos 75$ or 7515.(...)	M1	oe	
	$\left(80^{2}=\right) 6400$ and 7515.(...) and Liz	A2		
	Additional Guidance			
	$80^{2}+60^{2}-2 \times 80 \times 60 \times \cos 75$ seen followed by processing error can score up to M2$\begin{aligned} & \text { eg } 80^{2}+60^{2}-2 \times 80 \times 60 \times \cos 75 \\ & =6400+3600-9600 \cos 75 \\ & =400 \cos 75=103.5 \\ & \sqrt{103.5} \end{aligned}$			M1 M1depAO
	You may need to check on your calculator whether to award M1dep after first M1 with a processing error seen eg $80^{2}+60^{2}-2 \times 80 \times 60 \times \cos 75=3654$ (processing error) 60.4 (square root of 3654 is implied)			M1 M1depAO
	Ignore any reasons given			
	Alt 2 not possible to score M1A1			
	Answer [86.6, 86.7] and Liz (possibly from scale drawing)			M1M1A1
	[86.6, 86.7] (possibly from scale drawing)			M1M1

Question	Answer	Mark	Comments

Alternative method 1 (answer Liz in (a))		
No change	B1	oe eg Liz will still arrive first or Liz will be there even earlier (than Tia)

Alternative method 2 (answer Tia in (a))

| Not possible to tell | oe
 eg Liz might arrive before Tia
 or it depends on how much faster Liz
 walks
 or it could be either of them |
| :--- | :--- | :--- |

Alternative method 3 (answer they arrive at same time in (a))

Liz will arrive first	B1ft	oe eg Liz wins

Alternative method 4 (neither Liz or Tia in (a))

If Liz had arrived first there would be no change and if Tia had arrived first it would not be possible to tell	B1ft	oe
Additional Guidance		
If correct decision is made, ignore non-contradictory further work		
Alt $1 \quad$ Liz will arrive earlier	B1	
Alt 1 No	B0	
Alt 2 Yes	B0	

22	$x^{2}+y^{2}=25$	B1		
	Additional Guidance			

Question	Answer	Mark	Comments

24	Alternative method 1		
	Any product of three valid dimensions that would give a volume < 34000 or any product of three valid dimensions that would give a volume > 34000	M1	eg $49.5 \times 34.5 \times 19.5$ or $50.5 \times 35.5 \times 20.5$ or $50 \times 35 \times 20$ ignore any evaluations of products
	Any product of three valid dimensions that would give a volume < 34000 and any product of three valid dimensions that would give a volume > 34000	M1dep	$\text { eg } 49.5 \times 34.5 \times 19.5$ and $50.5 \times 35.5 \times 20.5$ ignore any evaluations of products
	34×1000 or 34000	M1	converts to cm^{3}
	their volume < 34000 and their volume > 34000 and 34000 and ticks Cannot tell	A1	both volumes in cm^{3} must see working for M3 answers for their volumes must be seen and be correct or rounded or truncated to at least 2 sf (unless 34000 to 2 sf when must be to at least 3 sf)

Mark scheme continues on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 24 \\ \text { cont } \end{gathered}$	Alternative method 2		
	Any product of three valid dimensions that would give a volume < 34000 or any product of three valid dimensions that would give a volume > 34000	M1	eg $49.5 \times 34.5 \times 19.5$ or $50.5 \times 35.5 \times 20.5$ or $50 \times 35 \times 20$ ignore any evaluations of products
	Any product of three valid dimensions that would give a volume < 34000 and any product of three valid dimensions that would give a volume > 34000	M1dep	$\text { eg } 49.5 \times 34.5 \times 19.5$ and $50.5 \times 35.5 \times 20.5$ ignore any evaluations of products
	one of their volumes $\div 1000$	M1dep	dep on first M1 converts to litres
	their volume < 34 and their volume > 34 and ticks Cannot tell	A1	both volumes in litres must see working for M3 answers for their volumes must be seen and be correct or rounded or truncated to at least 2 sf (unless 34000 to 2 sf when must be to at least 3 sf)

Additional guidance continues on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 24 \\ \text { cont } \end{gathered}$	Additional Guidance	
	There are an infinite number of sets of three valid dimensions Valid dimensions for 50 are [49.5, 50.5] for 35 are [34.5, 35.5] for 20 are [19.5, 20.5]	
	$\begin{aligned} & 49.5 \times 34.5 \times 19.5=33301 .(\ldots) \text { or } 33000 \text { or } 33300 \\ & 49.6 \times 34.6 \times 19.6=[33636,33637] \text { or } 33000 \text { or } 33600 \text { or } 33630 \\ & \text { or } 33640 \\ & 49.7 \times 34.7 \times 19.7=33974 .(\ldots) \text { or } 33000 \text { or } 33900 \text { or } 33970 \\ & 49.8 \times 34.8 \times 19.8=34314 .(\ldots) \text { or } 34300 \text { or } 34310 \\ & 49.9 \times 34.9 \times 19.9=34656 .(\ldots) \text { or } 34600 \text { or } 34700 \text { or } 34650 \text { or } 34660 \\ & 50 \times 35 \times 20=35000 \\ & 50.1 \times 35.1 \times 20.1=35346 .(\ldots) \text { or } 35000 \text { or } 35300 \text { or } 35340 \text { or } 35350 \\ & 50.2 \times 35.2 \times 20.2=35694 .(\ldots) \text { or } 35000 \text { or } 36000 \text { or } 35600 \text { or } 35700 \\ & \text { or } 35690 \\ & 50.3 \times 35.3 \times 20.3=36044 .(\ldots) \text { or } 36000 \text { or } 36040 \\ & 50.4 \times 35.4 \times 20.4=[36396,36397] \text { or } 36000 \text { or } 36300 \text { or } 36400 \\ & \text { or } 36390 \\ & 50.5 \times 35.5 \times 20.5=36751 .(\ldots) \text { or } 36000 \text { or } 37000 \text { or } 36700 \text { or } 36800 \\ & \text { or } 36750 \end{aligned}$	
	Three valid dimensions do not have to follow a pattern eg $49.6 \times 35 \times 20.4$ (= 35414 .(...) or 35000 or 35400 or 35410)	M1
	49.534 .519 .5 and 33301 (answer implies multiplication signs)	M1
	49.534 .519 .5 (no answer so multiplication signs not implied)	M0
	33301 but 49.534 .519 .5 not seen	M0
	Units do not have to be seen	

Question	Answer	Mark	Comments

26	Alternative method 1		
	$4 x^{2}+5 x+3=x+2$	M1	
	$\begin{aligned} & 4 x^{2}+5 x-x+3-2(=0) \\ & \text { or } 4 x^{2}+4 x+1(=0) \end{aligned}$	M1dep	oe collection of terms eg $4 x^{2}+5 x-x=2-3$ or $4 x^{2}+4 x=-1$
	$(2 x+1)(2 x+1)(=0)$ or $4\left(x+\frac{1}{2}\right)^{2}(=0)$ or $\frac{-4 \pm \sqrt{4^{2}-4 \times 4 \times 1}}{2 \times 4}$ or $b^{2}-4 a c=4^{2}-4 \times 4 \times 1$ or D (iscriminant) $=4^{2}-4 \times 4 \times 1$	A1	oe eg $\left(x+\frac{1}{2}\right)^{2}(=0)$ allow $b^{2}-4 a c=16-16$ or D (iscriminant) $=16-16$
	$(x=)-\frac{1}{2}$ with no other solutions with M2A1 seen or states that as brackets are the same there is only one solution with M2A1 seen or $b^{2}-4 a c=4^{2}-4 \times 4 \times 1=0$ and states there is only one solution with M2A1 seen or D (iscriminant) $=4^{2}-4 \times 4 \times 1=0$ and states there is only one solution with M2A1 seen	A1	oe allow $b^{2}-4 a c=16-16=0$ and states there is only one solution with M2A1seen allow D (iscriminant) $=16-16=0$ and states there is only one solution with M2A1seen

Mark scheme continues on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 26 \\ \text { cont } \end{gathered}$	Alternative method 2		
	$y=4(y-2)^{2}+5(y-2)+3$	M1	oe
	$\begin{aligned} & 4 y^{2}-16 y+16+5 y-10+3-y \\ & (=0) \\ & \text { or } 4 y^{2}-12 y+9(=0) \end{aligned}$	M1dep	oe expansion and collection of terms eg $4 y^{2}-16 y+5 y-y=10-16-3$ or $4 y^{2}-12 y=-9$
	$(2 y-3)(2 y-3)(=0)$ or $4\left(y-\frac{3}{2}\right)^{2}(=0)$ or $\frac{--12 \pm \sqrt{(-12)^{2}-4 \times 4 \times 9}}{2 \times 4}$ or $b^{2}-4 a c=(-12)^{2}-4 \times 4 \times 9$ or D (iscriminant) $=(-12)^{2}-4 \times 4 \times 9$	A1	oe eg $\left(y-\frac{3}{2}\right)^{2}(=0)$ allow $b^{2}-4 a c=144-144$ or allow D (iscriminant) $=144-144$
	$(y=) \frac{3}{2}$ with no other solutions with M2A1 seen or states that as brackets are the same there is only one solution with M2A1 seen or $b^{2}-4 a c=(-12)^{2}-4 \times 4 \times 9=0$ and states there is only one solution with M2A1 seen or $D(\text { iscriminant })=(-12)^{2}-4 \times 4 \times 9$ $=0$ and states there is only one solution with M2A1 seen	A1	oe allow $b^{2}-4 a c=144-144=0$ and states there is only one solution with M2A1seen allow D (iscriminant) $=144-144=0$ and states there is only one solution with M2A1seen

Additional guidance continues on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 26 \\ \text { cont } \end{gathered}$	Additional Guidance	
	Alt $1(x=)-\frac{1}{2}$ with no working or Alt $2(y=) \frac{3}{2}$ with no working	MOMOAOAO
	Alt 1 lgnore any y-coordinate whether correct ($=\frac{3}{2}$) or incorrect	
	Alt 2 Ignore any x-coordinate whether correct $\left(=-\frac{1}{2}\right)$ or incorrect	
	T \& I leading to $x=-\frac{1}{2}$	MOMOAOAO
	To award M1dep you must see a correct expression with terms collected or a correct equation with terms collected	
	$\begin{aligned} & 4 x^{2}+5 x+3=x+2 \\ & 4 x^{2}+1=-4 x \quad \text { (all } x \text { terms not collected on one side) } \end{aligned}$	MOdep
	$\begin{aligned} & 4 x^{2}+5 x+3=x+2 \\ & 4 x^{2}+4 x+3=2 \text { (all constant terms not collected on one side) } \end{aligned}$	M1 MOdep
	If using the discriminant to award A marks, you must see either $b^{2}-4 a c$ or D (iscriminant) $b^{2}-4 a c=4^{2}-4 \times 4 \times 1$ can be implied eg $b+\sqrt{b^{2}-4 a c}$ and $4+\sqrt{4^{2}-4 \times 4 \times 1}$ scores first A1 For final A1 must see $b^{2}-4 a c=4^{2}-4 \times 4 \times 1=0$ and statement that there is only one solution with M2A1 seen	

Question	Answer	Mark	Comments

27	Alternative method 1 Working with 2.75.....		
	$10 x=27.5 \ldots$ or $100 x=275.5$.	M1	oe multiplication by a power of 10 eg 1000 $x=2755.5 \ldots$ any letter
	$\begin{aligned} & 10 x-x=27.5 \ldots-2.75 \ldots \\ & \text { or } 9 x=24.8 \text { with } 10 x=27.5 \ldots \text { seen } \\ & \text { or } \\ & 100 x-10 x=275.5 \ldots-27.5 \ldots \\ & \text { or } 90 x=248 \text { with } 100 x=275.5 \ldots \\ & \text { and } 10 x=27.5 \ldots \text { seen } \\ & \text { or } \\ & 100 x-x=275.5 \ldots-2.75 \ldots \\ & \text { or } 99 x=272.8 \text { with } \\ & 100 x=275.5 \ldots \text { seen } \end{aligned}$	M1dep	oe subtraction to eliminate recurring digits eg 1000 $x-10 x=2755.5 \ldots-27.5 \ldots$ or $990 x=2728$ with $1000 x=2755.5 \ldots$ and $10 x=27.5 \ldots$ seen numbers must all be correct
	$x=2.75 \ldots$ stated and M2 scored and $9 x=24.8$ and $x=\frac{24.8}{9}=\frac{124}{45}$ or $x=2.75 \ldots$ stated and M2 scored and $90 x=248$ and $x=\frac{248}{90}=\frac{124}{45}$ or $x=2.75 \ldots$ stated and M2 scored and $99 x=272.8$ and $x=\frac{272.8}{99}=\frac{124}{45}$	A1	oe eg $x=2.75 \ldots$ stated and M2 scored and $990 x=2728$ and $x=\frac{2728}{990}=\frac{124}{45}$

Mark scheme continues on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 27 \\ \text { cont } \end{gathered}$	Alternative method 2 Working with 0.75....		
	$10 x=7.5 \ldots$ or $100 x=75.5$. .	M1	oe multiplication by a power of 10 eg $1000 x=755.5 \ldots$ any letter
	$\begin{aligned} & 10 x-x=7.5 \ldots-0.75 \ldots \\ & \text { or } 9 x=6.8 \text { with } 10 x=7.5 \ldots \text { seen } \\ & \text { or } \\ & 100 x-10 x=75.5 \ldots-7.5 \ldots \\ & \text { or } 90 x=68 \text { with } 100 x=75.5 \ldots \\ & \text { and } 10 x=7.5 \ldots \text { seen } \\ & \text { or } \\ & 100 x-x=75.5 \ldots-0.75 \ldots \\ & \text { or } 99 x=74.8 \\ & \text { with } 100 x=75.5 \ldots \text { seen } \end{aligned}$	M1dep	oe subtraction to eliminate recurring digits eg 1000 $x-10 x=755.5 \ldots-7.5 \ldots$ or $990 x=748$ with $1000 x=755.5 \ldots$ and $10 x=7.5 \ldots$ seen numbers must all be correct
	$x=0.75 \ldots$ stated and M2 scored and $9 x=6.8$ and $x=\frac{6.8}{9}$ and $2 \frac{6.8}{9}=\frac{124}{45}$ or $x=0.75 \ldots$ stated and M2 scored and $90 x=68$ and $x=\frac{68}{90}$ and $2 \frac{68}{90}=\frac{124}{45}$ or $x=0.75 \ldots$ stated and M2 scored and $99 x=74.8$ and $x=\frac{74.8}{99}$ and $2 \frac{74.8}{99}=\frac{124}{45}$	A1	oe eg $x=0.75 \ldots$ stated and M2 scored and $990 x=748$ and $x=\frac{748}{990}$ and $2 \frac{748}{990}=\frac{124}{45}$

Mark scheme continues on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 27 \\ \text { cont } \end{gathered}$	Alternative method 3 Working with 0.05.....		
	$10 x=0.5 \ldots$ or $100 x=5.5 \ldots$	M1	oe multiplication by a power of 10 eg $1000 x=55.55 \ldots$ any letter
	$10 x-x=0.5 \ldots-0.05 \ldots$ or $9 x=0.5$ with $10 x=0.5 \ldots$ seen or $100 x-10 x=5.5 \ldots-0.5 \ldots$ or $90 x=5$ with $100 x=5.5 \ldots$ and $10 x=0.5 \ldots$ seen or $100 x-x=5.5 \ldots-0.05 \ldots$ or $99 x=5.5$ with $100 x=5.5 \ldots \text { seen }$	M1dep	oe subtraction to eliminate recurring digits eg 1000x $-10 x=55.5 \ldots-0.5 \ldots$ or $990 x=55$ with $1000 x=55.5 \ldots$ and $10 x=0.5 \ldots$ seen numbers must all be correct
	$x=0.05 \ldots$ stated and M2 scored and $9 x=0.5$ and $x=\frac{0.5}{9}$ and $2.7+\frac{0.5}{9}=\frac{124}{45}$ or $x=0.05 \ldots$ stated and M2 scored and $90 x=5$ and $x=\frac{5}{90}$ and $2.7+\frac{5}{90}=\frac{124}{45}$ or $x=0.05 \ldots$ stated and M2 scored and $99 x=5.5$ and $x=\frac{5.5}{99}$ and $2.7+\frac{5.5}{99}=\frac{124}{45}$	A1	oe eg $x=0.05 \ldots$ stated and M2 scored and $990 x=55$ and $x=\frac{55}{990}$ and $2.7+\frac{55}{990}=\frac{124}{45}$

Additional guidance continues on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 27 \\ \text { cont } \end{gathered}$	Additional Guidance	
	$124 \div 45=2.75 \ldots$	MOMOAO
	Alt 1 M1dep oe subtraction to eliminate recurring decimals includes $100 x-10 x=248$ with $100 x=275.5 \ldots$ and $10 x=27.5 \ldots$ seen or $90 x=275.5 \ldots-27.5 \ldots$ with $100 x=275.5 \ldots$ and $10 x=27.5 \ldots$ seen (apply same principle in Alts 2 and 3)	
	Alt 2 equivalents for final part of A1 eg For $2 \frac{68}{90}=\frac{124}{45}$ allow $2+\frac{68}{90}=\frac{124}{45}$	
	Alt 3 equivalents for final part of A1 eg For $2.7+\frac{5}{90}=\frac{124}{45}$ allow $2+\frac{7}{10}+\frac{5}{90}=\frac{124}{45}$	

Question	Answer	Mark	Comments

28(b)	Alternative method 1			
	$x-7=3 y$ or $y-7=3 x$	M1	allow $x-7=3 g$ or $g-7=3 x$	
	$\frac{x-7}{3}$ or $\frac{y-7}{3}$	A1	oe allow $\frac{g-7}{3}$	
	-1.4 or $-\frac{7}{5}$	A1	oe	
	Alternative method 2			
	$3(2 x)+7$	M1	oe	
	$\begin{aligned} & x=3(2 x)+7 \\ & \text { or } x=6 x+7 \end{aligned}$	A1	oe equation	
	-1.4 or $-\frac{7}{5}$	A1	oe	
	Additional Guidance			
	Beware $-3 x-7=2 x$ leading to -1.4			MOAOAO

