GCSE Mathematics

8300/3H - Paper 3 Higher Tier

Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments

| 1 | 0.56 | B1 | |
| :--- | :--- | :---: | :--- | :--- |
| | Additional Guidance | | |
| | | | |

2	$-1,0,1,2,3,4$	B1		
	Additional Guidance			

3	$3.2 \dot{7}$	B1		
	Additional Guidance			

4	36°	B1		
	Additional Guidance			

Question	Answer	Mark	Comments

5	At least two common factors of 72 and 120 from 2, 3, 4, 6, 8, 12, 24 or $72=2(x) 2(x) 2(x) 3(x) 3$ or $120=2(x) 2(x) 2(x) 3(x) 5$	M1	May be seen on a diagram, eg factor tree	
	At least two common multiples of 6 and 9 from 18, 36, 54...	M1		
	(HCF $=$) 24 selected from factors or $a=24$ or (LCM =) 18 selected from multiples or $b=18$	M1	oe eg HCF = $2(x) 2(x) 2(x) 3$ 24 can be implied from their numerator oe eg LCM $=2(x) 3(x) 3$ 18 can be implied from their denominator oe eg $\frac{2 \times 2 \times 2 \times 3}{2 \times 3 \times 3}$	
	$1 \frac{1}{3}$ or $\frac{4}{3}$ or $1.33 \ldots$	A1	oe Accept $\frac{24}{18}$ Ignore further incorrect	elling
	Additional Guidance			
	HCF = 24 and LCM = 18			M1M1M1
	HCF $=24$			M1M0M1
	LCM $=18$			M0M1M1

Question	Answer	Mark	Comments

6	54	B1	May be on diagram	
	$\begin{aligned} & 7.5 \\ & 6 \end{aligned}$	B2	May be on diagram B1 for 1 correct or for answers transposed	
	Additional Guidance			
	If an diag eg $9 \div$	wer rans wer	check working and tion errors	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 0 \end{aligned}$
	$\begin{aligned} & \text { Ansv } \\ & x=8 \end{aligned}$	ram	$x=54$ on diagram and	B0

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

8(a)	Alternative method 1 - Using gradients		
	Gradient of $y=3 x+7$ is 3 and $y=3 x+4$ and gradient of $2 y-6 x=8$ is 3 or $6 \div 2$	B3	May come from using points on line eg using (0,7) and (1,10) and $\frac{10-7}{1-0}=3$ or correct calculation for gradient from points on line $2 y-6 x=8$ eg using $(0,4)$ and $(1,7)$ and $\frac{7-4}{1-0}=3$ B2 for $y=3 x+4$ and lines have same gradient or $y=3 x+4$ and gradient of $2 y-6 x=8$ is 3 or $6 \div 2$ or gradient of $y=3 x+7$ is 3 and $y=3 x+4$ B1 for gradient of $y=3 x+7$ is 3 or $y=3 x+4$ or gradient of $2 y-6 x=8$ is 3 or $6 \div 2$
	Alternative method 2 - Using coord	tes and	distances
	Chooses a value for x and correctly evaluates the y value for both lines	M1	eg (0,7$)$ and (0, 4)
	Chooses a different value for x and correctly evaluates the y value for both lines	M1dep	eg (1,10) and (1, 7)
	States that y values are a constant distance apart so parallel	A1	oe

Continues on next page

8(a)cont	Alternative method 3 - Using simultaneous equations			
	$y=3 x+4$ or $y-3 x=4$ or $2 y=6 x+14$ or $2 y-6 x=14$	M1	oe Equates coefficients in any form	
	Any attempt to eliminate both variables from their equations	M1dep		
	States simultaneous equations have no (real) solution and concludes parallel	A1		
		ditional	uidance	
	To award A mark on Alternative	od 2, the	working must be seen	
	$y=3 x+4$ and lines have gradi			B2
	$y=3 x+4$ and $3 x$ identified in b	quations		B2
	Both lines have gradient $3 x$			B1
	$y=3 x+7$, gradient 3 and $y=3 x$ rearrangement)	gradient	(error in	B1
	$y=3 x+8$, gradient 3 (error in re	gement)		B0
	Parallel as both have same grad			B0
	$\begin{aligned} & 2(3 x+7)-6 x=8 \\ & 6 x+14-6 x=8 \\ & 14=8 \end{aligned}$			M1 M1
	$y=3 x+7$ and $y=\frac{8+6 x}{2}$ are Alternative method 3	d coeffic		M1

Question	Answer	Mark	Comments

8(b)	$\begin{aligned} & 3 \times-5+7 \\ & \text { or }-15+7 \\ & \text { or }-8 \\ & \text { or }(-5,-8) \\ & \text { or }(-6-7) \div 3 \text { or }-4.33 \ldots \\ & \text { or } y=3 x+9 \end{aligned}$	M1	Use a point on $y=$ compare gradient eg Gradient from	$-5,-6)$ to 7) is 2.6
	Above and -8 or Above and -4.33 or Above and $y=3 x+9$	A1	oe Above and eg Gra $(0,7)$ is 2.6	$-5,-6) \text { to }$
	Additional Guidance			
	Do not ignore incorrect statements eg -6 is less than -8 so above			M1A0
	$(0,7),(-1,4),(-2,1),(-3,-2),(-4,-5),(-5,-8)$ and ticks below			M1A0

9	1.1 seen or $110 \%=19.25$ seen or $19.25 \div 110$	M1	oe eg $\begin{aligned} & 10 \%=1.75 \\ & 1 \%=0.175 \end{aligned}$	
	$19.25 \div 1.1$ or 0.175×100 or 17.5	M1dep	oe	
	17.50	A1	correct money notation	
	Additional Guidance			
	Condone £17.50p			M1M1A1
	Answer £17.5			M1M1A0

Question	Answer	Mark	Comments

10	55 and 91	B3	B2 for (7), 19, 31, 43, 55, 67, 79, 91 or 55 identified with 0 or 1 incorrect answer or 91 identified with 0 or 1 incorrect answer or 55 and 91 identified with 1 incorrect answer B1 at least 2 correct two-digit numbers from the sequence seen	
	Additional Guidance			
	The correct sequence is (7), 19, 31, 43, 55, 67, 79, 91 Ignore continuation of sequence beyond 91			
	Ignore further working unless contradictory			
	55 and 91 identified and $5^{\text {th }}$ and $8^{\text {th }}$ terms stated (ignore fw)			B3
	55 and 91 identified and answer 2 (or there are 2) (ignore fw)			B3
	55 identified and $5^{\text {th }}$ stated (ignore fw)			B2
	Condone 5 or $5^{\text {th }}$ as final answer provided there is a clear link to 55 eg $12 \times 5=60-5=5555 \div 11=55$ on answer line			B2
	Condone 8 or $8^{\text {th }}$ as final answer provided there is a clear link to 91 eg $12 \times 8=96-5=918$ on answer line			B2

11(a)	$\binom{1}{-1}$	B2	B1 for 1 correct value in correct position Condone a divisor line	
	Additional Guidance			

Question	Answer	Mark	Comments	
$\binom{-2}{4}$ seen \quad M1				
11(b)	Valid reason	A1	$\begin{aligned} & \text { eg }\binom{-2}{4}=2 \times\binom{-1}{2} \\ & \binom{-2}{4}=2 b \end{aligned}$ $\binom{-2}{4}$ is a multiple of $\binom{-1}{2}$ $\mathbf{a}+2 \mathbf{c}$ is a multiple of \mathbf{b} $2 b=a+2 c$	
	Additional Guidance			
	Condone vectors written as coordinates, eg ($-1,2$) is half of ($-2,4$)			
	Must see $\binom{-2}{4}$ or ($-2,4$) to award the A mark			
	Condone missing brackets and / or divisor lines			
	$\binom{-2}{4}$ seen and both gradient -2			M1A1
	$\binom{-2}{4}$ seen and double so parallel			M1A1
	$\binom{-2}{4}$ seen and half so parallel			M1A1
	$\binom{-2}{4}$ seen and $\mathbf{a}+2 \mathbf{c}$ is $2 \mathbf{b}$			M1A1
	$\binom{-2}{4}$ seen and $\mathbf{b}=1 / 2 \mathbf{a}+2 \mathbf{c}$			M1A0
	$\binom{-2}{4}$ seen and both have same ratio			M1A0
	$\frac{-2}{4}$ and $\frac{-1}{2}$ both equal -0.5			M1A0

Question	Answer	Mark	Comments

$\mathbf{1 2}$	12.5 or $12 \frac{1}{2}$ or $\frac{25}{2}$	B1		
	$\mathrm{N} / \mathrm{m}^{2}$ or newtons per square metre or Nm^{-2} or pascals or Pa	B1	oe	
	Additional Guidance			
	$\mathrm{m}^{2} / \mathrm{N}$ or P	B 0		

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

| 15 | $4(x+3)$ | B1 | |
| :--- | :--- | :---: | :--- | :--- |
| | Additional Guidance | | |
| | | | |

16	$\left(-\frac{3}{4}, 3\right)$	B1		
	Additional Guidance			

17	$7 \times 5(\times 9)$ or $(100-30) \div 2(\times 9)$ or $35(\times 9)$ or $99 \div 11$ or 9 or $4 \times 5 \times 4 \times 5$	M1	First two digits of Method A Last two digits of Method A Complete for Method B	
	315 or 400	A1		
	315 and 400 with Method B identified	A1	Method B can be implied by choosing 400	
	Additional Guidance			
	315 and 400 and B with no working			M1A1A1
	315 and 400 with 400 circled			M1A1A1
	Beware $40 \times 10=400($ for Method A$)$ is incorrect working			

Question	Answer	Mark	Comments

18	Alternative method 1		
	$\frac{2(x+4)}{6 x} \text { or }(-) \frac{15}{6 x}$ or $\frac{2 x+8}{6 x}$ or $(-) \frac{15}{6 x}$ or $\frac{2 x(x+4)}{6 x^{2}}$ or $(-) \frac{15 x}{6 x^{2}}$ or $\frac{2 x^{2}+8 x}{6 x^{2}}$ or $(-) \frac{15 x}{6 x^{2}}$	M1	oe A correct fraction using a common denominator for one of the given fractions Accept for this mark only eg 2(3x) for $6 x$ 3(5) for 15 $(2 x)(3 x)$ for $6 x^{2}$ First fraction can be written as separate fractions eg $\frac{2 x}{2(3 x)}+\frac{8}{2(3 x)}$
	$\frac{2(x+4)}{6 x}$ and $(-) \frac{15}{6 x}$ or $\frac{2 x+8}{6 x}$ and $(-) \frac{15}{6 x}$ or $\frac{2 x(x+4)}{6 x^{2}}$ and $(-) \frac{15 x}{6 x^{2}}$ or $\frac{2 x^{2}+8 x}{6 x^{2}}$ and $(-) \frac{15 x}{6 x^{2}}$	A1	oe A correct fraction using a common denominator for both of the given fractions First fraction can be written as separate fractions eg $\frac{2 x}{6 x}+\frac{8}{6 x}$
	$\frac{2 x-7}{6 x}$ or $\frac{2 \mathrm{k} x-7 \mathrm{k}}{6 \mathrm{k} x}$, where k is a constant value	A1	Accept eg $\frac{2 x+-7}{6 x}$ Do not ignore further working

Continues on next page

$\begin{gathered} 18 \\ \text { cont } \end{gathered}$	Alternative method 2			
	$\frac{2(x+4)}{6 x} \text { or }(-) \frac{15}{6 x}$ or $\frac{2 x+8}{6 x}$ or $(-) \frac{15}{6 x}$ or $\frac{2 x(x+4)}{6 x^{2}}$ or $(-) \frac{15 x}{6 x^{2}}$ or $\frac{2 x^{2}+8 x}{6 x^{2}}$ or $(-) \frac{15 x}{6 x^{2}}$	M1	oe A correct fraction using a common denominator for one of the given fractions Accept for this mark only eg 2(3x) for $6 x$ 3(5) for 15 (2x)(3x) for $6 x^{2}$ First fraction can be written as separate fractions eg $\frac{2 x}{2(3 x)}+\frac{8}{2(3 x)}$	
	$\frac{2 x+8-15}{6 x}$ or $\frac{2 x-7}{6 x}$ or $\frac{2 k x-7 k}{6 k x}$, where k is a constant value	A1	Allow one error in numerator Accept eg $\frac{2 x+-7}{6 x}$ Must be $6 x$ or a multiple of $6 x$	
	$\frac{2 x-7}{6 x}$ or $\frac{2 \mathrm{k} x-7 \mathrm{k}}{6 \mathrm{k} x}$, where k is a constant value	A1	Accept eg $\frac{2 x+-7}{6 x}$ Do not ignore further working	
	Additional Guidance			
	Use the method that gives the greater mark			
	$\frac{2 x^{2}-7 x}{6 x^{2}}$			M1A1
	$\frac{2 x-7}{6 x}=\frac{-5}{6 x}$			M1A1A0
	$\frac{15 x}{6 x^{2}}-\frac{2 x^{2}+8 x}{6 x^{2}}$ (order of fractions reversed)			M1A0A0

Question	Answer	Mark	Comments

19	$(8,0)$	B1		
	Additional Guidance			

Question	Answer	Mark	Comments

21(a)	$m \alpha h^{3}$ or $m=\mathrm{k} \times h^{3}$ or $1600=\mathrm{k} \times 8^{3}$ or $\mathrm{c} \times m=h^{3}$ or $\mathrm{c} \times 1600=8^{3}$	M1	oe eg $h=\mathrm{k} m^{1 / 3}$	
	$(k=) 1600 \div 8^{3}$ or 3.125 or $(\mathrm{C}=) 8^{3} \div 1600$ or 0.32	M1dep	$\begin{aligned} & \text { oe eg } \frac{1600}{512} \text { or } \frac{25}{8} \\ & \frac{512}{1600} \text { or } \frac{8}{25} \end{aligned}$	
	$m=3.125 \times h^{3}$ or $0.32 \times m=h^{3}$	A1	oe equation	
	Additional Guidance			
	$m \alpha 3.125 \times h^{3}$ or $0.32 m a h^{3}$			M1M1A0
	($k=$) 3.125 or $(\mathrm{c}=) 0.32$			M1M1
	$3.125 h^{3}$ or $0.32 h^{3}$			M1M1

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

| 23 | $u_{2}=0.6$ or $\frac{3}{5}$
 $u_{3}=1.875$ or $\frac{15}{8}$ | oe
 B1 for 1 correct
 or for u_{2} incorrect but their value of u_{3}
 correctly follows through rounded or
 truncated to 4 dp |
| :--- | :--- | :---: | :--- |

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

25(a)	$\tan 6=\frac{C D}{500}$ or $500 \times \tan 6$	M1	oe any letter $\frac{C D}{\sin 6}=\frac{500}{\sin 84}$
	[52.5, 52.6] or 53	A1	May be on diagram
	Additional Guidance		
	Check diagram for angle		

Question	Answer	Mark	Comments

25(b)	Alternative method 1		
	$500^{2}+400^{2}$ or $250000+160000$ or 410000	M1	oe
	$\sqrt{\text { their } 410000}$ or $\sqrt{500^{2}+400^{2}}$ or 640.(3...)	M1dep	$A C$
	$\tan x=\frac{[52.5,52.6] \text { or } 53}{\text { their } 640 .(3 . .)}$	M1dep	oe any letter
	[4.6, 4.75] from correct working	A1	accept 5 with correct working seen
	Alternative method 2		
	$\frac{500}{\cos 6}$ or [502.7, 502.8]	M1	$\begin{aligned} & \text { oe } \\ & B D \end{aligned}$
	$\begin{aligned} & \sqrt{\left(\frac{500}{\cos 6}\right)^{2}+400^{2}} \\ & \text { or }[642.4,642.5] \end{aligned}$	M1dep	$A D$
	$\sin x=\frac{[52.5,52.6] \text { or } 53}{\text { their }[642.4,642.5]}$	M1dep	oe any letter
	[4.6, 4.75] from correct working	A1	accept 5 with correct working seen

Continues on next page

25(b) cont	Alternative method 3			
	$500^{2}+400^{2}$ or $250000+160000$ or 410000 or $\frac{500}{\cos 6}$ or [502.7, 502.8]	M1	oe $B D$	
	$\begin{aligned} & \sqrt{\text { their } 410000} \text { or } \sqrt{500^{2}+400^{2}} \\ & \text { or } 640 .(3 \ldots) \\ & \text { or } \sqrt{\left(\frac{500}{\cos 6}\right)^{2}+400^{2}} \\ & \text { or }[642.4,642.5] \end{aligned}$	M1dep	$A C$ $A D$	
	$\cos x=\frac{\text { their 640.(3...) }}{\text { their }[642.4,642.5]}$	M1dep		
	[4.6, 4.75] from correct working	A1	acce	ing seen
		ditional	idan	
	Check diagram for lengths			
	Beware $\sin x=\frac{52.6}{640 .(3 \ldots .)}$ leads to	$6,4.75]$		M1M1M0A0

Question	Answer	Mark	Comments

26(a)	Alternative method 1 - Counting squares		
	15 or 6.6 or 2.4 (cm squares)	M1	375 or 165 or 60 (small squares)
	their 15 + their $6.6+$ their 2.4 or 24 (total cm squares)	M1dep	allow one error their 375 + their 165 + their 60 or 600 (total small squares)
	$\frac{\text { their } 15}{\text { their } 24}$ or $\frac{\text { their } 375}{\text { their } 600}$ or 0.625 or $\frac{480}{\text { their } 600}$ or 0.8 (cars per small square) or $\frac{480}{\text { their } 24}$ or 20 (cars per cm square)	M1dep	oe $\frac{\text { their } 600}{480}$ or 1.25 (small squares per car) $\frac{\text { their } 24}{480}$ or 0.05 (cm square per car)
	300	A1	
	Alternative method 2 - Using f.d. scale of x per unit		
	$5 x \times 15$ or $75 x$ or $6.6 x \times 5$ or $33 x$ or $0.8 x \times 15$ or $12 x$ (x per cm)	M1	$25 x \times 15$ or $375 x$ or $33 x \times 5$ or $165 x$ or $4 x \times 15$ or $60 x$ (x per small square)
	$5 x \times 15+6.6 x \times 5+0.8 x \times 15$ or $75 x+33 x+12 x$ or $120 x$ (x per cm)	M1dep	allow one error $\begin{aligned} & 25 x \times 15+33 x \times 5+4 x \times 15 \\ & \text { or } 375 x+165 x+60 x \\ & \text { or } 600 x \\ & \text { (} x \text { per small square) } \end{aligned}$
	their $120 x=480$ or $x=4$	M1dep	$\text { oe } \frac{480}{\text { their } 120} \text { or } 4$
	300	A1	

Continues on next page

26(a) cont	Alternative method 3 - Using a number scale of f.d. axis			
	$\begin{aligned} & 5 \times 15 \text { or } 75 \\ & \text { or } 6.6 \times 5 \text { or } 33 \\ & \text { or } 0.8 \times 15 \text { or } 12 \end{aligned}$	M1	$25 \times 15 \text { or } 375$ or 33×5 or 165 or 4×15 or 60	
	$\begin{aligned} & 5 \times 15+6.6 \times 5+0.8 \times 15 \\ & \text { or } 75+33+12 \\ & \text { or } 120 \\ & (1 \text { per } \mathrm{cm}) \end{aligned}$	M1dep	allow one error $25 \times 15+33 \times 5+4 \times$ or $375+165+60$ or 600 (1 per small square)	
	$\frac{\text { their } 15}{\text { their } 24}$ or $\frac{\text { their } 375}{\text { their } 600}$ or 0.625 or $\frac{480}{\text { their } 600}$ or 0.8 (cars per small square) or $\frac{480}{\text { their } 24}$ or 20 (cars per cm square)	M1dep	oe $\frac{\text { their } 600}{480}$ or 1.25 (small squares per ca $\frac{\text { their } 24}{480}$ or 0.05 (cm square per car)	
	300	A1		
		ditional	uidance	
	Check diagram for working			
	Alternative method 1 Total squares	must be th	sum of three numbers	
	Alternative method 2 Must be the s	of three	expressions	
	The correct f.d. labels for the heigh	of the ba	are 20, 26.4 and 3.2	
	A correct frequency density scale 4 seen on vertical scale at 1 cm 20 seen on vertical scale at 5 cm	$\mathrm{gg} 1 \mathrm{~cm}=$	units eg	M1M1M1 M1M1M1

Question	Answer	Mark		Comments
26(b)	$\frac{2}{3} \times 2.4$ or 1.6 or $\frac{2}{3} \times 60$ or 40 or $\frac{2}{3} \times 48$ or $10 \times 0.8 \times 4$	M1	oe	
	32	A1		
	Additional Guidance			

27	$\frac{10}{30}$ and $\frac{9}{31}$ seen or $\frac{1}{3}$ and $\frac{9}{31}$ seen	M1	oe accept 0.33...	
	$\begin{aligned} & \frac{10}{30} \times \frac{9}{31} \times \frac{8}{32} \\ & \text { or } \frac{1}{3} \times \frac{9}{31} \times \frac{1}{4} \end{aligned}$	M1dep	oe accept 0.33...	0.25
	$\frac{3}{124} \text { or }[0.0239,0.0242]$	A1	$\text { oe eg } \frac{720}{29760}$	
	Additional Guidance			
	Fractions do not have to be in simplest form			
	$\frac{10}{30} \times \frac{9}{31} \times \frac{8}{32} \times \frac{7}{33}$			M1M0
	$\frac{10}{30}+\frac{9}{31}+\frac{8}{32}$			M1M0

Question	Answer	Mark	Comments	
$4^{2}+y^{2}=80$ or $y=\sqrt{64}$ M1 oe May be implied from 8 on diagram				
	$y=-8$	A1	Accept (4, -8)	
	$\frac{\text { their }-8}{4}$ or -2	M1	oe gradient of radius $O P$	
	$-1 \div$ their -2 or $\frac{1}{2}$ or $-1 \div$ their gradient	M1	gradient of tangent at P	
28	$y=\frac{1}{2} x-10$ or $y+8=\frac{1}{2}(x-4)$	A1	oe Ignore further working	
	Additional Guidance			
	$y+8=\frac{1}{2}(x-4)$ followed by error expanding and/or collecting terms			M1A1M1M1A1
	$y=\frac{1}{2} x-10$ in working and $\frac{1}{2} x-10$ only on answer			M1A1M1M1A1
	$\frac{1}{2} x-10$			M1A1M1M1A0
	$\begin{aligned} & (y=\sqrt{64}) \\ & y=8 \end{aligned}$ Gradient $O P=2$ Perpendicular gradient $=-\frac{1}{2}$			$\begin{aligned} & \text { M1 } \\ & \text { A0 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A0 } \end{aligned}$

