

Surname	
Other Names	
Centre Number	
Candidate Number	
Candidate Signature	

GCSE MATHEMATICS

H

Higher Tier

Paper 1 Non-Calculator

8300/1H

Tuesday 6 November 2018

Morning

Time allowed: 1 hour 30 minutes

For this paper you must have:

mathematical instruments

You must NOT use a calculator.

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.

BLANK PAGE

INSTRUCTIONS

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do not write on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

ADVICE

In all calculations, show clearly how you work out your answer.

DO NOT TURN OVER UNTIL TOLD TO DO SO

Answer ALL questions in the spaces provided.

1 Simplify $(5^4)^2$ Circle your answer. [1 mark]

56

58

25⁶

25⁸

2 Circle the volume, in cm³, of a cylinder with radius 5 cm and height 8 cm [1 mark]

 40π

 80π

 200π

 1600π

3 Simplify $16a^2 \div a + 3a \times 2$

Circle your answer. [1 mark]

22 *a*

8 *a*

38 *a*

2 *a*

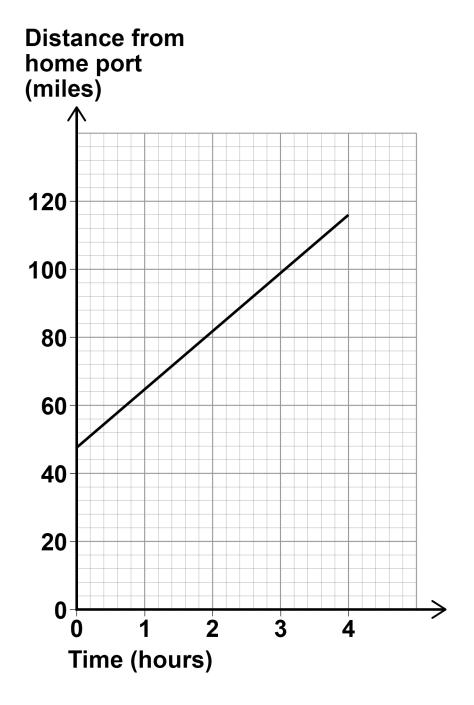
4 Circle the value of cos 30° [1 mark]

1 2

 $\frac{\sqrt{3}}{2}$

0

1


5	Work out	$8\frac{1}{2}$ ÷	$2\frac{2}{3}$
5	Work out	$8{2} \div$	$\frac{2}{3}$

Give your answer as	s a illixeu ilullik	Jer. [4 mark
	_	_
Answer		

A ship is sailing in a straight line from its home port.

The distance-time graph shows 4 hours of the journey.

Work out 4 hours.		ship du	ring the	se
Answer				_mph

The sum of the angles in any quadrilateral is 360°
For example, in a rectangle 4 × 90° = 360°
Zak writes,
5 × 90° = 450° so the sum of the angles in any pentagon must be 450°
Is he correct?
Tick a box.
Yes No
Show working to support your answer. [2 marks]

BLANK PAGE

8 Kim works at an airport in the UK.

She records the number of planes landing between 10 am and 2 pm each day.

The tables show the data for the first 10 days in January.

Day	1	2	3	4	5
Number of planes	148	151	147	155	153

Day	6	7	8	9	10
Number of planes	147	155	102	151	154

8 (a) The airport was affected by fog on one of the days.

Which day do you think it was?

Give a reason for your answer. [1 mark]

Day ____

Reason _____

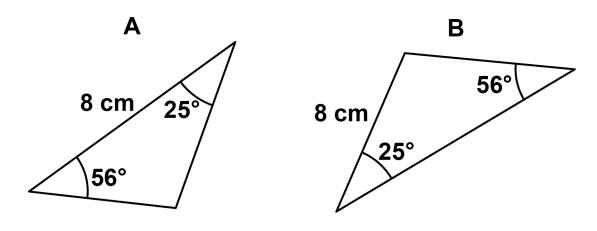
-hour
ch day.

BLANK PAGE

8 (c)	In fact,
	fewer planes land in winter than in summer fewer planes land at night than during the day.
	What does this tell you about Kim's prediction?
	Tick ONE box.
	Her prediction is too low
	Her prediction is too high
	Her prediction could be too low or too high
	Give a reason for your answer. [2 marks]
[Turn o	ver]

Work out	Nork out the value of a . [4 marks]			

Answer



Work out the percentage inc [3 marks]	crease from 80 to 28
Answer	

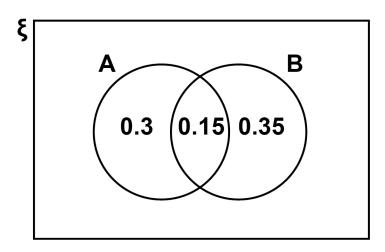
11 Here are four triangles.

The diagrams are not drawn accurately.

Which TWO triangles are congruent?

Circle TWO letters below. [1 mark]

A B C D

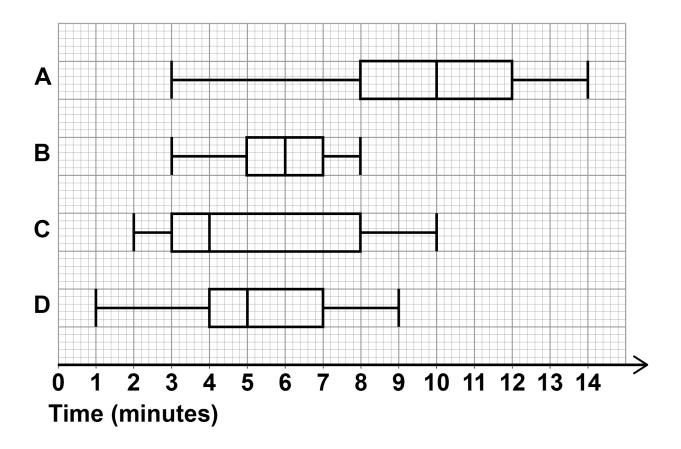

Give your	answer in	its simpl	est form.	[3 ma
•		•		_

8

A and B are two events. 14

> Some probabilities are shown on the Venn diagram.

	Work out	P(A' U B)	[2 marks]	
	Answer			
[Turn	over]			8



In a survey, queuing times at supermarket checkouts were recorded.

One morning, samples of 50 customers were taken at supermarkets A, B, C and D.

The box plots represent the results.

Queuing times

15 (a)	On average, which supermarket had the lowest queuing times?				
	Give a reason for your answer. [2 marks]				
	Supermarket				
	Reason				
15 (b)	At which supermarket were the queuing times most consistent?				
	Give a reason for your answer. [2 marks]				
	Supermarket				
	Reason				

16	Circle the number that is closest to the value of
	29 ³ [1 mark]

27 000

90

2700

9000

17 Work out the exact value of
$$\left(\frac{3}{4}\right)^{-3}$$
 [2 marks]

Answer

7

18 Beth and Mia translate documents from Spanish into English.

A set of documents that would take Beth 8 days would take Mia 10 days.

Beth starts to translate the documents.

After 2 days Beth and Mia both work on translating the documents.

How many MORE days will it take to complete the work?

You MUST show your w	vorking. [4 marks]
Answer	days

19	In a chess club, there are x boys and y girls.					
19 (a)	If 5 more boys and 8 more girls join, there would be half as many boys as girls.					
	Show that $y = 2x + 2$ [2 marks]					

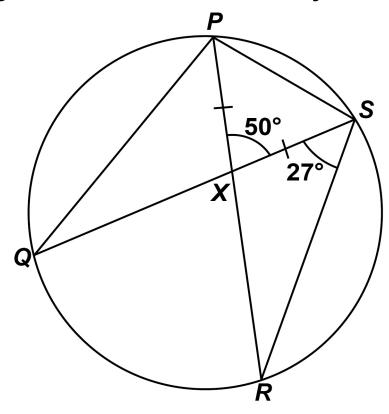
19 (b)	If instead	t,
--------	------------	----

10 more boys and 1 more girl join, there would be the same number of boys and girls.

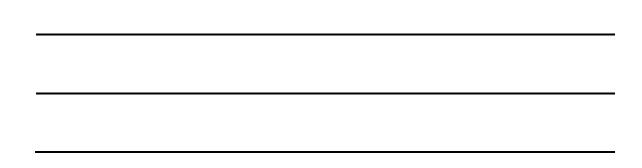
Work out x and y . [3 marks]						
<i>x</i> =						
<i>y</i> =						

[Turn over]

9



20 P, Q, R and S are points on a circle.


PXR and QXS are straight lines.

$$PX = SX$$

The diagram is not drawn accurately.

Prove that QS is NOT a diameter of the circle. [4 marks]

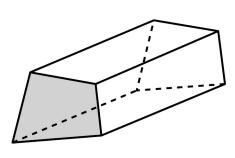
	_

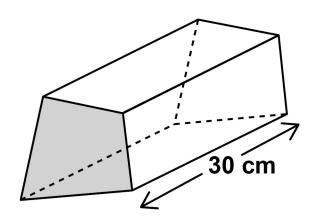
11	26	45	68
Work o [3 mark	-	ession for t	he <i>n</i> th term.

	Answer _			
[Turn o	ver]			7

22 Solve
$$\frac{x}{x+4} + \frac{7}{x-2} = 1$$

x =		




23 Prisms A and B are similar.

The cross sections are shaded.

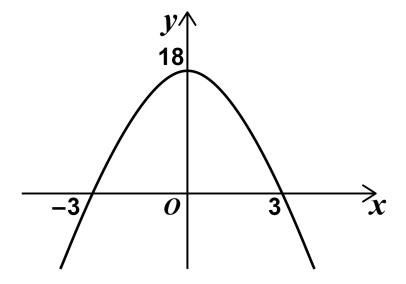
Prism A volume = 480 cm³

Prism B length = 30 cm

area of the cross section of A: area of the cross section of B = 4:9

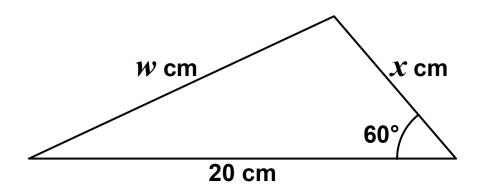
Work out the area of the cross section of B. [5 marks]

_		
_		
_		
_		
_		
^	Answer	cm ²
<i>P</i>	inswer	
Turn ov	vorl	
, i urii ov	/ei]	9


Show	that $\frac{2\sqrt{6}}{\sqrt{5}}$ -	$\frac{\sqrt{3}}{\sqrt{10}}$	can be writt	ten in the
form	$\frac{c \sqrt{d}}{10}$ where	<i>c</i> and	d <i>d</i> are integ	ers.
[3 mar				

A quadratic curve intersects the axes at (-3, 0), (3, 0) and (0, 18)

The diagram is not drawn accurately.

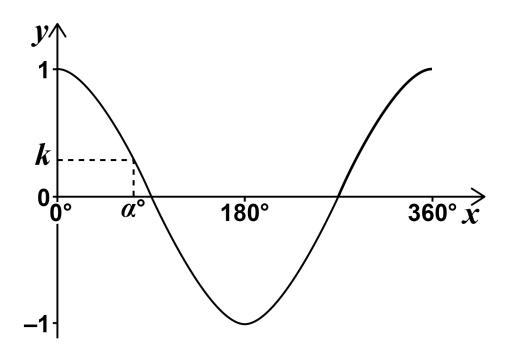

work out the equation of the curve.	[3 marks]

Answer	 		
[Turn over]			6

The area of this triangle is $25\sqrt{3}$ cm² The diagram is not drawn accurately.

Work out the value of w.

Give your answer in the form $a \sqrt{b}$ where a and b are integers greater than 1 [5 marks]					



-			
A			
Answer			

Here is a sketch of $y = \cos x$ for values of x**27** from 0° to 360°

The diagram is not drawn accurately.

 α^{o} is an acute angle.

 $\cos \alpha^{\circ} = k$

27 (a) Circle the value of $\cos (180^{\circ} - \alpha^{\circ})$ [1 mark]

1-k k

-k

-1 - k

27 (b) Circle the value of $\cos (360^{\circ} + \alpha^{\circ})$ [1 mark]

k-1 k+1 -k

k

END OF QUESTIONS

There are no questions printed on this page

For Examiner's Use				
Pages	Mark			
4–5				
6–8				
10–13				
14–16				
17–19				
20–22				
22–25				
26–29				
30–33				
34–37				
38–41				
TOTAL	le Transfer de la constant de la con			

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

IB/M/Nov18/CD/8300/1H/E5

