GCSE
 MATHEMATICS
 8300/1H

Higher Tier Paper 1 Non-Calculator
Mark scheme
November 2018
Version: 1.0. Final

* $18 \mathrm{bG} 8300 \mathrm{IH} / \mathrm{MS}^{*}$

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep \quad A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

| Question | Mnswer | Comments |
| :--- | :---: | :---: | :---: |

$\mathbf{1}$	5^{8}	B1	
$\mathbf{2}$	200π	B1	

3	$22 a$	B1	
4	$\frac{\sqrt{3}}{2}$	B1	

Question	Answer	Mark	Comments

The Additional Guidance for question 5 is on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 5 \\ \text { cont } \end{gathered}$	Additional Guidance				
	Working with decimals				0,3 or 4
	Ignore incorrect attempt to simplify a mixed number eg $3 \frac{3}{16}=3 \frac{1}{8}$				M1M1A1B1
	$3 \frac{3}{16}$ seen, then $\frac{51}{16}$ on answer line				M1M1A1B0
	$\frac{9}{2}$ and $\frac{8}{3}, \quad \frac{27}{6} \div \frac{16}{6}, \quad \frac{27}{16}, \quad 1 \frac{11}{16}$				M1M1A0B1ft
	$\frac{9}{2}$ and $\frac{8}{3}, \quad \frac{27}{6} \div \frac{16}{6}, \quad 1 \frac{11}{16}$				M1M1A0B1ft
	$\frac{9}{2}$ and $\frac{4}{3}, \quad \frac{27}{6} \div \frac{8}{6}, \quad 3 \frac{3}{8}$				M0M1A0B1ft

Question	Answer	Mark	Comments

6	Alternative method 1			
	Correct reading of at least one value at 0 hours $[46,50]$ at 1 hour $[63,67]$ at 2 hours $[80,84]$ at 3 hours $[96,100]$ at 4 hours $[114,118]$	M1	may be seen on graph	
	subtraction of two values correct number of hours	M1	division by 1 may be implied	
	17	A1	SC1 29	
	Alternative method 2			
	A difference in the range for 1 hour $[15,19]$ for 2 hours $[32,36]$ for 3 hours $[49,53]$ for 4 hours $[66,70]$	M1	may be seen on graph	
	difference correct number of hours	M1	division by 1 may be implied	
	17	A1	SC1 29	
	Additional Guidance			
	$(119-42) \div 4=19.25$			M0M1A0
	for 2nd M1 in Alt 1, subtraction must be in the correct order unless recovered			
	17 does not imply three marks, so working must be checked eg $(110-42) \div 4=17$			M0M1A0

Question	Answer	Mark	Comments

The Additional Guidance for question 7 is on the next page

Question	Answer	Mark	Comments

$*$ 7 cont	If comparing 72° to 90°, they must state that they are referring to the exterior angles	
	If 'Yes' is ticked, M1 can still be scored	
	If neither box is ticked, 'No' must be implied by the explanation for $M 1 A 1$	

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

8(c)	Ticks 'Her prediction could be too low or too high' and explains that fewer landings in winter would make it too low, but fewer landings at night would make it too high or states that the actual numbers are not given	B2	oe reason B1 ticks 'Her prediction c too high'	too low or
	Additional Guidance			
	Ticks 'Her prediction could be too low or too high' and states that there is not enough data			B1 only

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

10	Alternative method 1		
	280-80 or 200	M1	
	$\begin{aligned} & \text { their } 200 \div 80(\times 100) \\ & \text { or } 2.5(\times 100) \end{aligned}$	M1dep	oe
	250	A1	
	Alternative method 2		
	$280 \div 80$ or 3.5	M1	oe
	$\begin{aligned} & 280 \div 80 \times 100(-100) \\ & \text { or their } 3.5 \times 100(-100) \\ & \text { or } 350(-100) \\ & \text { or (their } 3.5-1)(\times 100) \\ & \text { or } 2.5(\times 100) \end{aligned}$	M1dep	oe
	250	A1	

11	A and D	B1	

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

13	Alternative method 1			
	$2 \times 5: 3 \times 5$ or $10: 15$ and $5 \times 3: 4 \times 3$ or $15: 12$	M1	oe common value for f eg $10: 15: 12$ or $\frac{2}{3}: 1: \frac{4}{5}$	
	10: 12	M1dep	oe unsimplified ratio condone fractions or decimals	
	5: 6	A1		
	Alternative method 2			
	$3 e=2 f$ and $4 f=5 g$	M1	oe equations	
	$6 e=5 g$	M1dep	oe equation	
	$5: 6$	A1		
	Additional Guidance			
	Variables in an otherwise correct answer: the same variable scores 2 marks, eg $5 f: 6 f$ different variables do not score, unless earlier marks can be awarded, eg $5 e: 6 g$ with no working worth M1 or M1M1			M1M1A0 MOMOAO

14	$1-0.3-0.15-0.35$ or $1-0.8$ or 0.2 or $0.15+0.35(+0.2)$ or $0.5(+0.2)$ or 1-0.3 or $A^{\prime} \cup B$ clearly shaded on diagram	M1	oe	
	0.7	A1	oe fraction, decimal or percentage	
	Additional Guidance			
	Do not award M1 for $0.15+0.35$ or calculation $\text { eg } 0.15+0.35=0.5,0.5+0.3=0$		n used in an incorrect working)	MO

Question	Answer	Mark	Comments

15(a)	C and 'lowest median'	B2	oe B1 C	
	Additional Guidance			
	If the value of the median is given it must be 4 for B2			
	Accept midpoint oe for median			
	Do not accept mean for median			
	Only accept average for median if the value of 4 is also given			
	Accept mention of the lowest lower quartile with correct mention of the median for B2, but do not accept mention of any extra statistical measure as part of their justification			

15(b)	B and 'lowest interquartile range' or B and 'lowest range'	B2	oe B1 B	
	Additional Guidance			
	If the value of the interquartile range is given it must be 2 for B 2 If the value of the range is given it must be 5 for B 2			
	For B2, do not accept non-statistical reasons, eg 'the narrowest box'			
	For B2, do not accept mention of any extra statistical measure as part of their justification			

Question	Answer	Mark	Comments

16	27000	B 1	

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

19(a)	$2(x+5)=y+8$ or $2 x+10=y+8$	M1	oe eg $\frac{x+5}{y+8}=\frac{1}{2}$ or $\frac{y+8}{x+5}=2$
	$2 x+10=y+8$ and $y=2 x+2$	A1	

19(b)	$x+10=y+1$	M1	oe	
	Eliminates x or y from their $(x+10)=y+1$ and $y=2 x+2$	M1	their $(x+10)=$ in x and y eg $x+10=y-1$ followed by $x+11=2 x+2$	an equation 2)
	$x=7$ and $y=16$	A1		
	Additional Guidance			
	$x=7$ or $y=16$ with no value or an incorrect value for the other unknown and no working worth M marks			MOMOAO

Question	Answer	Mark	Comments

20	Alternative method 1		
	angle $Q P R=27$	M1	may be seen on diagram
	$\text { angle } X P S=\frac{180-50}{2} \text { or } 65$	M1	may be seen on diagram
	```angle QPR = 27 and angle XPS = 65 and angle QPS = 92 and angle in a semicircle is a right angle```	A1	oe accept $92 \neq 90$
	all reasons for angle facts: angles in same segment (are equal)   and angle sum of triangle (is 180) and base angles of isosceles triangle (are equal)	A1	oe   oe   oe


Question	Answer	Mark	Comments


20 cont	Alternative method 2		
	```angle SXR=180-50 or 130 and angle XRS = 180-their 130-27 and angle PQS = their 23```	M1	may be seen on diagram   angle $X R S=23$
	angle $X S P=\frac{180-50}{2}$ or 65	M1	may be seen on diagram
	```angle SXR = 130 and angle XRS = 23 and angle PQS = 23 and XSP = 65 and angle QPS = 92 and angle in a semicircle is a right angle```	A1	oe accept $92 \neq 90$
	all reasons for angle facts: angles on a straight line (add up to 180)   and angle sum of triangle (is 180) and angles in same segment (are equal)   and base angles of isosceles triangle (are equal)	A1	oe   oe   oe   oe


Question	Answer	Mark	Comments



Question	Answer	Mark	Comments


22	Any two of $x(x-2)$ and $7(x+4)$ and $(x-2)(x+4)$	M1	oe   $x(x-2)$ and $7(x+4)$ cannot be denominators
	correct equation including $x(x-2)$ and $7(x+4)$ and $(x-2)(x+4)$	M1dep	
	$x^{2}-2 x+7 x+28=x^{2}+4 x-2 x-8$	M1dep	oe all brackets must be expanded
	-12	A1	
	Alternative method 2		
	$\frac{x(x-2)}{x+4}+7=x-2$	M1	
	$\frac{x(x-2)}{x+4}=x-9$   or $x(x-2)=(x-9)(x+4)$	M1dep	
	$x^{2}-2 x=x^{2}-9 x+4 x-36$	M1dep	oe all brackets must be expanded
	-12	A1	
	Alternative method 3		
	$x+\frac{7(x+4)}{x-2}=x+4$	M1	
	$\frac{7(x+4)}{x-2}=4$   or $7(x+4)=4(x-2)$	M1dep	
	$7 x+28=4 x-8$	M1dep	oe all brackets must be expanded
	-12	A1	
	Additional Guidance		
	In Alt 1, do not allow $x \times x-2$ or $7 \times x+4$ unless recovered		


Question	Answer	Mark	Comments


23	Alternative method 1		
	$\sqrt{4}: \sqrt{9}$ or $2: 3$	M1	length $A$ : length $B$
	$30 \div$ their $3 \times$ their 2 or 20	M1dep	length $A$
	$480 \div$ their 20 or 24	M1dep	area cross section A
	their $24 \div 4 \times 9$	M1dep	
	54	A1	
	Alternative method 2		
	$\sqrt{4}: \sqrt{9}$ or $2: 3$	M1	length $A$ : length B
	$(\sqrt{4})^{3}:(\sqrt{9})^{3}$ or $8: 27$	M1dep	volume A : volume B
	$480 \div$ their $8 \times$ their 27 or 1620	M1dep	volume B
	their $1620 \div 30$	M1dep	
	54	A1	


Question	Answer	Mark	Comments


24	Alternative method 1		
	$\begin{aligned} & \frac{2 \sqrt{6}}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \\ & \text { or } \frac{\sqrt{3}}{\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}} \end{aligned}$	M1	
	$\begin{aligned} & \frac{2 \sqrt{30}}{5} \text { or } \frac{4 \sqrt{30}}{10} \\ & \text { or } \frac{\sqrt{30}}{10} \end{aligned}$	M1dep	
	$\frac{3 \sqrt{30}}{10}$	A1	
	Alternative method 2		
	$\begin{aligned} & \frac{2 \sqrt{6} \sqrt{2}}{\sqrt{10}}-\frac{\sqrt{3}}{\sqrt{10}} \\ & \text { or } \frac{2 \sqrt{12}}{\sqrt{10}}-\frac{\sqrt{3}}{\sqrt{10}} \end{aligned}$	M1	oe common denominator eg $\frac{2 \sqrt{60}}{\sqrt{50}}-\frac{\sqrt{15}}{\sqrt{50}}$
	$\frac{4 \sqrt{3}}{\sqrt{10}}-\frac{\sqrt{3}}{\sqrt{10}}$ or $\frac{3 \sqrt{3}}{\sqrt{10}}$	M1dep	oe common denominator and common surd in numerator $\frac{4 \sqrt{15}}{\sqrt{50}}-\frac{\sqrt{15}}{\sqrt{50}} \text { or } \frac{3 \sqrt{15}}{\sqrt{50}}$
	$\frac{3 \sqrt{30}}{10}$	A1	
		itional	uidance
	Ignore an attempt at fur	on after	$\frac{\sqrt{30}}{10}$ M1M1A1


Question	Answer	Mark	Comments


25	Alternative method 1			
	$\begin{aligned} & a(-3)^{2}+b(-3)+c=0 \\ & \text { or } a(3)^{2}+b(3)+c=0 \end{aligned}$	M1	oe	
	any two of $(-) 6 b=0, c=18 \text { and } 9 a+18=0$	M1dep	oe	
	$y=18-2 x^{2}$	A1	oe equation	
	Alternative method 2			
	$y=18-2 x^{2}$	B3	oe equation   B2 correct equation missing $y=$   eg $18-2 x^{2}$   B1   equation of a quadratic curve that passes through $(-3,0)$ or $(3,0)$ or $(0,18)$   condone missing $y=$   eg $(y=) 18-x^{2}$ or $(y=)(3+x)(3-x)$   or $(y=) x^{2}-2 x-3$   or $(y=)(x+3)(x-3)$	
	Additional Guidance			
	Correct equations include$\begin{aligned} & y=2(3+x)(3-x) \\ & y=-2(x+3)(x-3) \\ & y=(6+2 x)(3-x) \\ & y=(3+x)(6-2 x) \end{aligned}$			
	For B3, B2 or B1 ignore incorrect expansion after correct equation or expression seen			


Question	Answer	Mark	Comments


26	Alternative method 1		
	$0.5 \times 20 \times x \times \sin 60$   or $10 x \sin 60$ or $5 \sqrt{3} x$	M1	oe
	$\begin{aligned} & 0.5 \times 20 \times x \times \sin 60=25 \sqrt{3} \\ & \text { or } x=5 \end{aligned}$	M1dep	oe equation
	$\begin{aligned} & \text { (their } 5)^{2}+20^{2} \\ & -2 \times \text { their } 5 \times 20 \times \cos 60 \\ & \text { or } 25+400-200 \cos 60 \\ & \text { or } 325 \end{aligned}$	M1	oe their 5 must be their value of $x$
	$\sqrt{\text { their 325 }}$	M1dep	dep on 3rd M1   their 325 can be unsimplified
	$5 \sqrt{13}$	A1	
	Alternative method 2		
	$\begin{aligned} & 0.5 \times 20 \times h=25 \sqrt{3} \\ & \text { or } h=\frac{5 \sqrt{3}}{2} \end{aligned}$	M1	oe any letter   $h$ is perpendicular height for 20 cm base
	$\begin{aligned} & \sin 60=\frac{\text { their } \frac{5 \sqrt{3}}{2}}{x} \\ & \text { or } x=5 \end{aligned}$	M1dep	oe
	$\begin{aligned} & \text { (their } 5)^{2}+20^{2} \\ & -2 \times \text { their } 5 \times 20 \times \cos 60 \\ & \text { or } 25+400-200 \cos 60 \\ & \text { or } 325 \end{aligned}$	M1	oe their 5 must be their value of $x$
	$\sqrt{\text { their 325 }}$	M1dep	dep on 3rd M1   their 325 can be unsimplified
	$5 \sqrt{13}$	A1	


Question	Answer	Mark	Comments



27(a)	$-k$	B 1	


27(b)	$k$	B 1	

