

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

GCSE MATHEMATICS

Higher Tier

Paper 2 Calculator

Thursday 8 November 2018 Morning

Time allowed: 1 hour 30 minutes

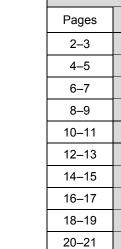
Materials

For this paper you must have:

- a calculator
- mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.


Information

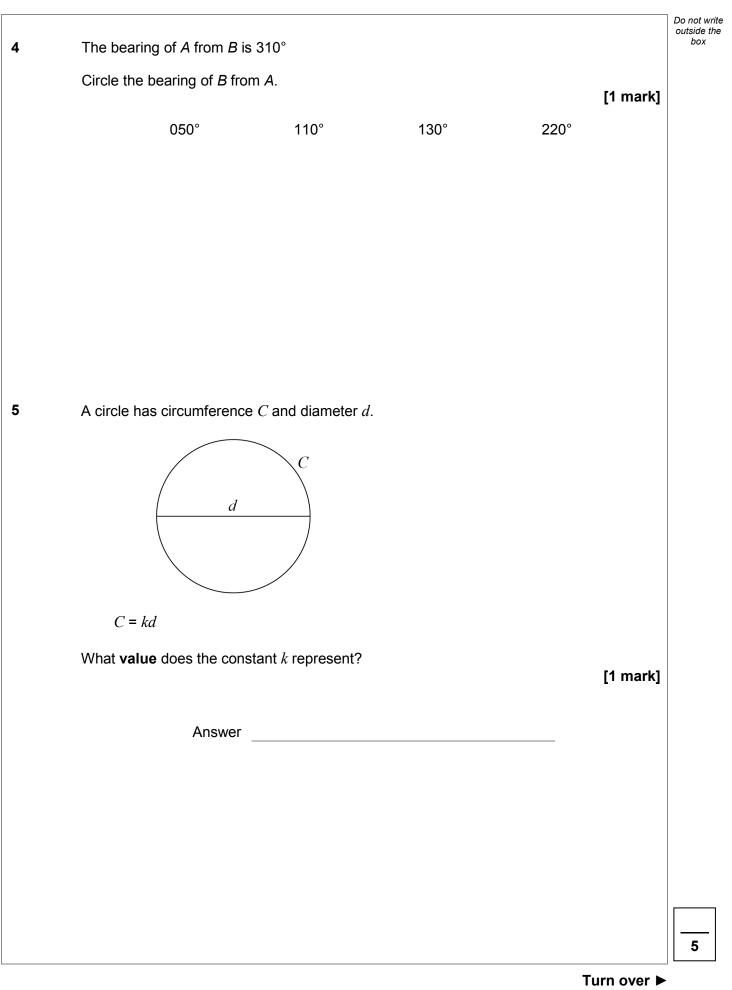
- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

Advice

In all calculations, show clearly how you work out your answer.

22-23

TOTAL


For Examiner's Use

Mark

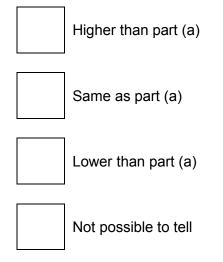
	Answer all q	uestions in the	spaces p	provi	ded				
1	What does (A \cap B) represent Circle your answer.	in P(A∩B)	?						[1 mark]
	A or B or both					A	but i	not B	
	not A and not B					,	A an	d B	
2	P is (4, 9) and Q is (-2, 1) Circle the midpoint of PQ . (1, 5)	(3, 4)	(3	3, 5)				(6, 8)	[1 mark]
3	Which of these is a geometric	progression?							
	Circle your answer.	progression.							[1 mark]
	1 3 5 7	9		1	3	6	10	15	
	1 4 9 16	25		1	3	9	27	81	

Do not write outside the box

Number of minutes late, <i>t</i>	Number of trains	Midpoint		
0 <i>≤ t</i> < 5	12			
5 <i>≤ t</i> < 10	7			
10 <i>≤ t</i> < 15	1			
<i>t</i> ≥ 15	0			
				[3 mark
			minutes	
	Answer		minutes	
	Answer		minutes	

IB/M/Nov18/8300/2H

Do not write outside the box


6 (b) The station manager looks at the information in more detail.

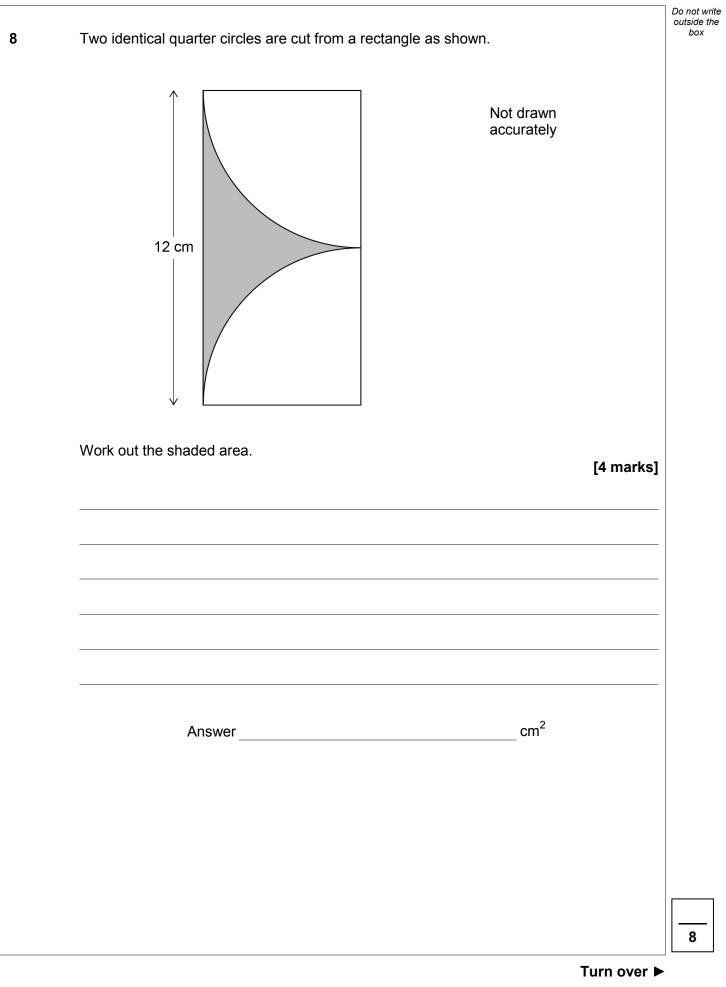
Number of minutes late, <i>t</i>	Number of trains
0 <i>≤ t</i> < 2	12
2 <i>≤ t</i> < 4	0
4 <i>≤ t</i> < 6	7
6 <i>≤ t</i> < 8	0
8 <i>≤ t</i> < 10	0
10 <i>≤ t</i> < 12	1

He works out an estimate of the mean using this information.

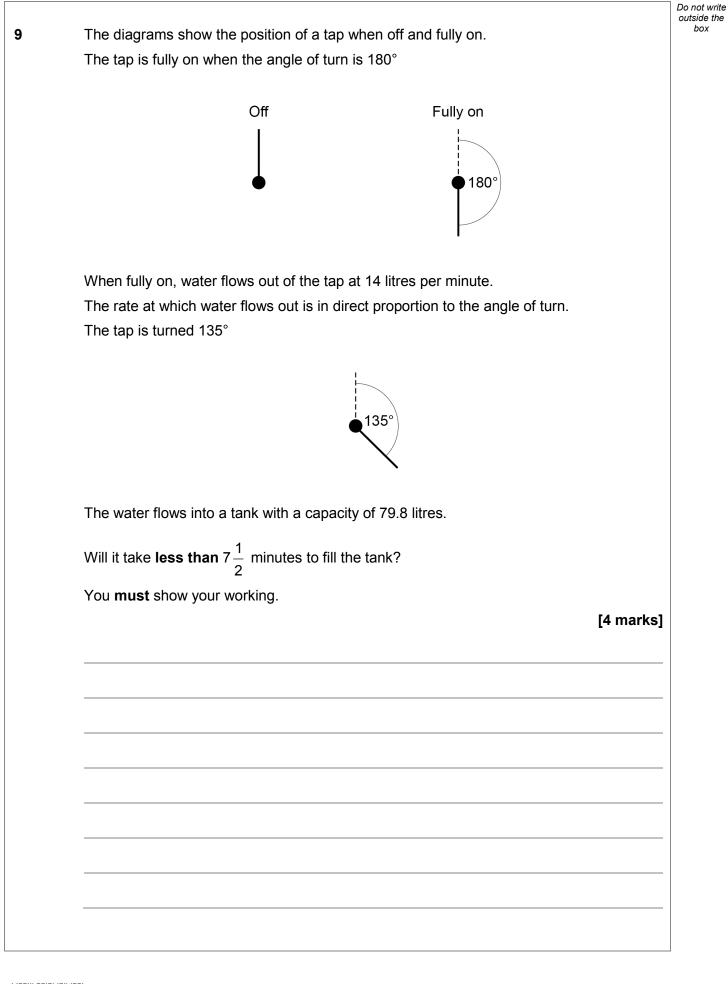
How does his estimate compare with the answer to part (a)? Tick **one** box.

[1 mark]

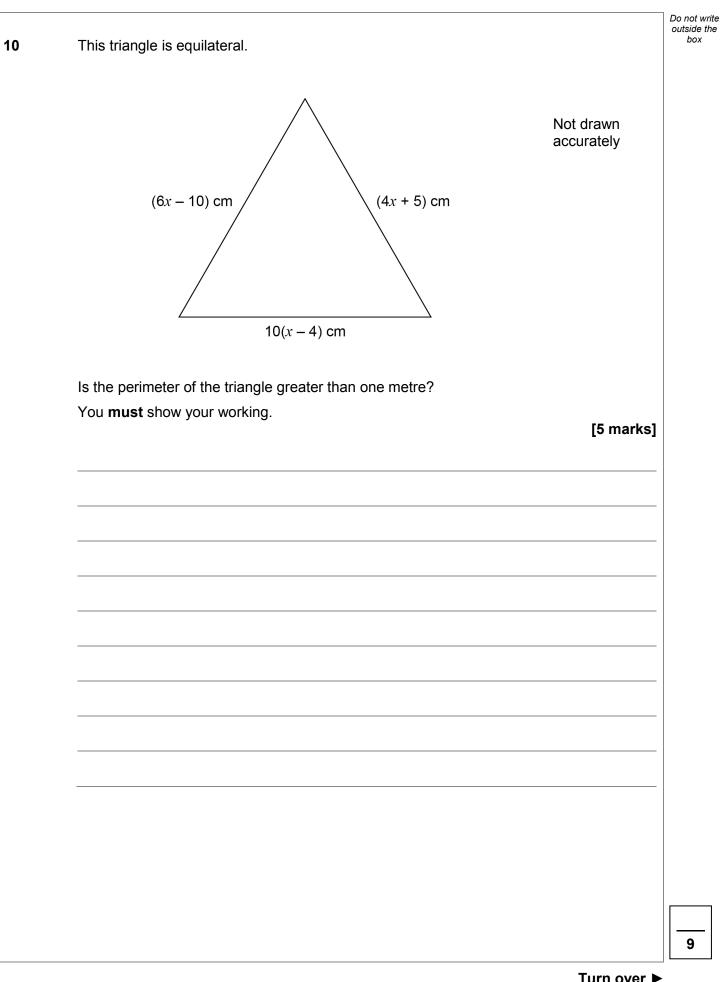
Turn over for the next question


Turn over ►

4


6

7	Work out the values of a and b in the identity	Do not write outside the box
	$5(7x+8) + 3(2x+b) \equiv ax + 13$	
	[4 marks]	
	<i>a</i> = <i>b</i> =	



		Do not
1	An approximation for the value of π is given by	outside box
	$4\left(1-\frac{22}{57}+\frac{22}{85}-\frac{22}{105}+\frac{22}{117}-\frac{22}{242}\right)$	
	Use your calculator to show that this approximation is within 0.1 of 3.14 [2 marks]
		_
		_
		_
2	Work out $\frac{9.12 \times 10^{10}}{3.2 \times 10^4}$	
	Give your answer in standard form. [2 marks]
		-
	Answer	_

Do not write outside the box

•••	ie crate is a cubo	xes into a crate. pid measuring 2	.5 n	n by 2 m by 1.2 m		
Ea	ach box is a cube	e of length 50 cm				
He does	these calculatio	ns.				
		volume of crate		2.5 × 2 × 1.2 6 m ³		
	volu	ume of one box	=			
	ทเ	umber of boxes	=			
He claim	S,					
"[can put 48 boxe	s in the crate."				
Evaluate	Ashraf's metho	d and claim.				[2 m
						L=
The cros	s section of a pr	ism has <i>n</i> sides.				
		ism has <i>n</i> sides. the number of ec	dges	s of the prism.		
			dges	s of the prism.		[1 n
			dges	s of the prism. n + 2	2 <i>n</i> + 3	[1 n
	e expression for	the number of ec	dges		2 <i>n</i> + 3	[1 n
	e expression for	the number of ec	dges		2 <i>n</i> + 3	[1 n


7

		Do not write outside the
15	The volume of a medal is 45 cm^3	box
	The medal is made from copper and tin.	
	volume of copper : volume of tin = 22 : 3	
	The density of copper is 8.96 g/cm ³	
	The density of tin is 7.31 g/cm ³	
	Work out the mass of the medal.	
	[4 marks]	
	Answer grams	
	Answer grams	

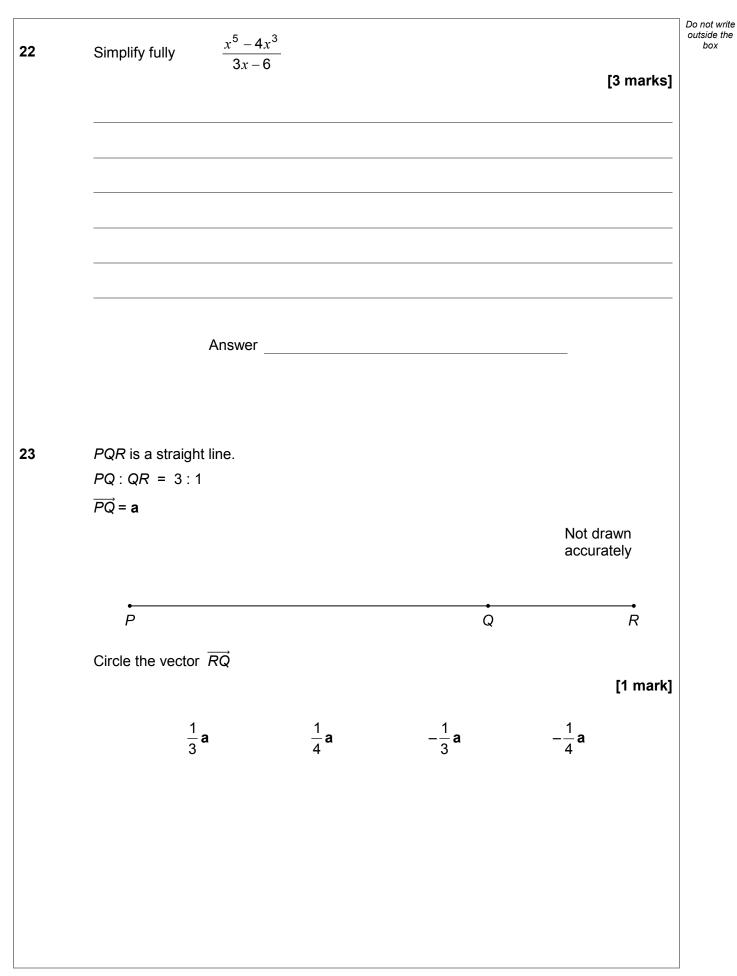
				Do not write outside the
17	<i>a</i> is a prime number.			box
	b is an even number.			
	$N = a^2 + ab$			
	Circle the correct statement about N.			
			[1 mark]	
	could be even or odd	always even		
	always prime	always odd		
18	A bag contains 20 discs.			
	10 are red, 7 are blue and 3 are green.			
18 (a)	Marnie takes a disc at random before putting it ba Nick then takes a disc at random before putting it			
	Olly then takes a disc at random.			
	Work out the probability that they all take a red dis	SC.		
			[2 marks]	
	Answer			

	15	
18 (b)	All 20 discs are in the bag. Reggie takes three discs at random, one after the other. After he takes a disc he does not put it back in the bag. Reggie's first disc is blue.	Do ou
	Work out the probability that all three discs are different colours.	[3 marks]

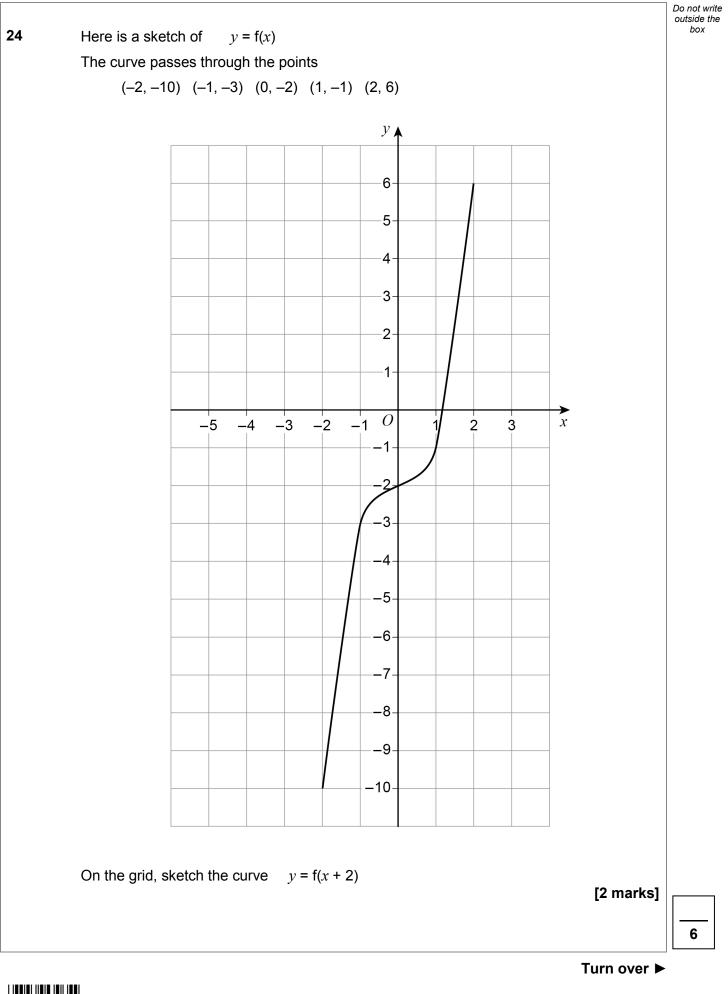
6

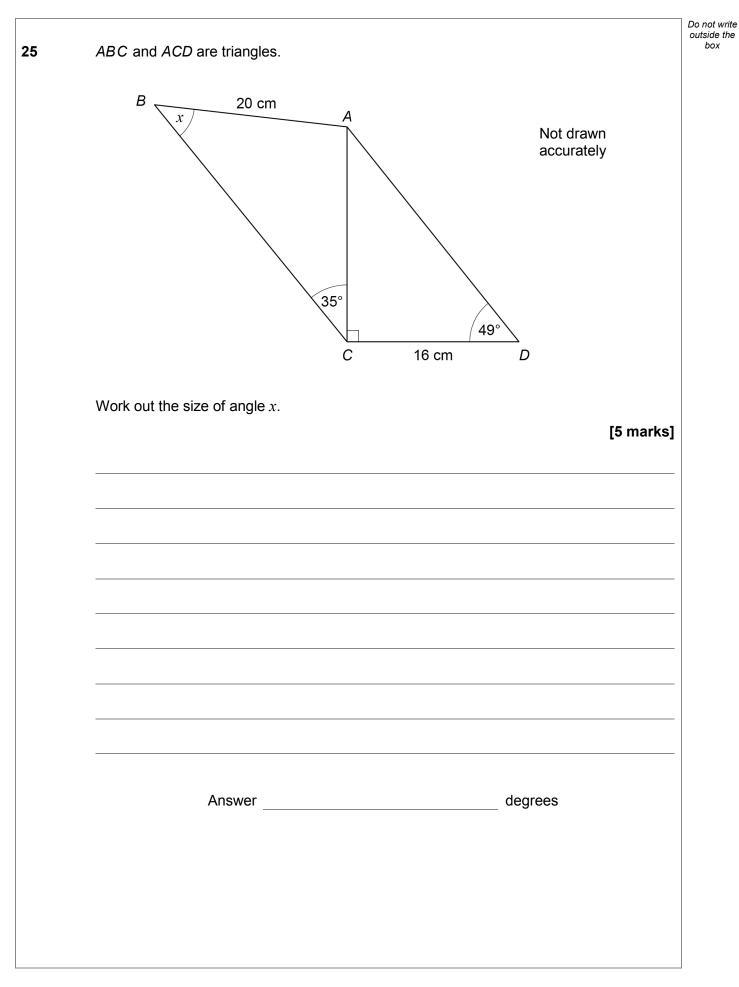
Answer ____

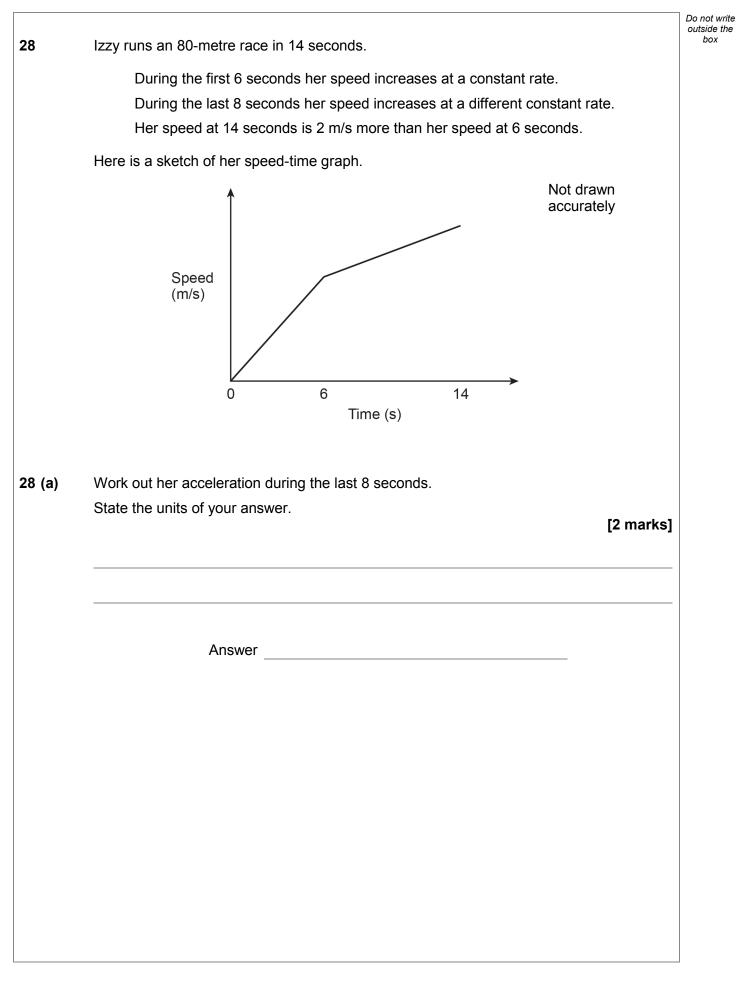
Lunch Choose one starter and one main course There are four starters and ten main courses to choose from. Two of the starters and three of the main courses are suitable for vegans. What percentage of the possible lunches have both courses suitable for vegans? [3 marks						
There are four starters and ten main courses to choose from. Two of the starters and three of the main courses are suitable for vegans. What percentage of the possible lunches have both courses suitable for vegans? [3 marks [3 marks] Answer% <i>n</i> is a positive integer. Prove algebraically that $2n^2 \left(\frac{3}{n} + n\right) + 6n(n^2 - 1)$ is a cube number.		Choos		e main course	9	
Two of the starters and three of the main courses are suitable for vegans. What percentage of the possible lunches have both courses suitable for vegans? [3 marks [3 marks] Answer% <i>n</i> is a positive integer. Prove algebraically that $2n^2\left(\frac{3}{n}+n\right)+6n(n^2-1)$ is a cube number.		011003				
What percentage of the possible lunches have both courses suitable for vegans? [3 marks [3 marks] Answer % <i>n</i> is a positive integer. Prove algebraically that $2n^2 \left(\frac{3}{n} + n\right) + 6n \left(n^2 - 1\right)$ is a cube number.	There are four sta	rters and	d ten main courses t	o choose from	٦.	
[3 marks Answer % <i>n</i> is a positive integer. Prove algebraically that $2n^2 \left(\frac{3}{n} + n\right) + 6n\left(n^2 - 1\right)$ is a cube number.	Two of the starters	s and thi	ree of the main cours	ses are suitab	le for vegans.	
Answer % <i>n</i> is a positive integer. Prove algebraically that $2n^2 \left(\frac{3}{n} + n\right) + 6n(n^2 - 1)$ is a cube number.	What percentage	of the po	ossible lunches have	both courses	s suitable for v	
Answer % <i>n</i> is a positive integer. Prove algebraically that $2n^2 \left(\frac{3}{n} + n\right) + 6n(n^2 - 1)$ is a cube number.						[3 marks]
Answer% <i>n</i> is a positive integer. Prove algebraically that $2n^2 \left(\frac{3}{n} + n\right) + 6n(n^2 - 1)$ is a cube number.						
Answer % <i>n</i> is a positive integer. Prove algebraically that $2n^2 \left(\frac{3}{n} + n\right) + 6n(n^2 - 1)$ is a cube number.						
<i>n</i> is a positive integer. Prove algebraically that $2n^2\left(\frac{3}{n}+n\right)+6n\left(n^2-1\right)$ is a cube number.						
<i>n</i> is a positive integer. Prove algebraically that $2n^2\left(\frac{3}{n}+n\right)+6n\left(n^2-1\right)$ is a cube number.						
<i>n</i> is a positive integer. Prove algebraically that $2n^2\left(\frac{3}{n}+n\right)+6n\left(n^2-1\right)$ is a cube number.						
<i>n</i> is a positive integer. Prove algebraically that $2n^2\left(\frac{3}{n}+n\right)+6n\left(n^2-1\right)$ is a cube number.						
Prove algebraically that $2n^2\left(\frac{3}{n}+n\right)+6n\left(n^2-1\right)$ is a cube number.		Answer			%	
Prove algebraically that $2n^2\left(\frac{3}{n}+n\right)+6n\left(n^2-1\right)$ is a cube number.						
Prove algebraically that $2n^2\left(\frac{3}{n}+n\right)+6n\left(n^2-1\right)$ is a cube number.						
Prove algebraically that $2n^2\left(\frac{3}{n}+n\right)+6n\left(n^2-1\right)$ is a cube number.	<i>n</i> is a positive inte	aer.				
[3 marks			$2n^{2}(3+n) + 6n$	$(n^2 1)$	is a cubo pu	mhor
	Prove algebraical	y that	$2n \left(\frac{-}{n}+n\right)+6n$	n(n - 1)	is a cube flu	[2 marke]
						[3 marks]



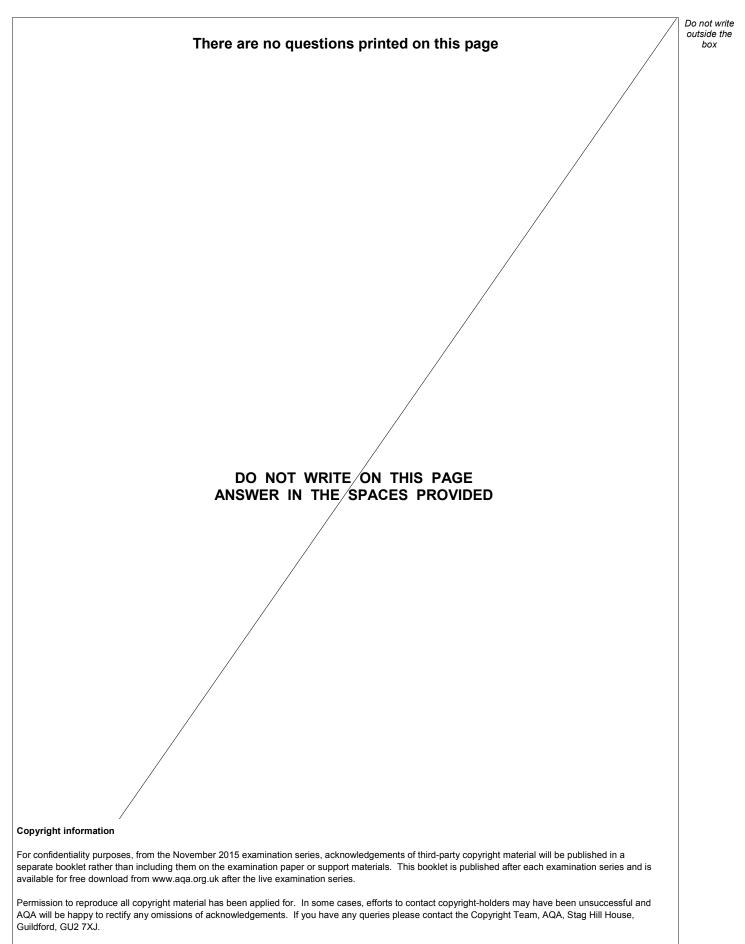
17


24			Do not write outside the box
21		<i>y</i> is inversely proportional to \sqrt{x} <i>y</i> = 4 when <i>x</i> = 9	
		y = 4 when $x = 5$	
21	(a)	Work out an equation connecting y and x .	
		[3 marks]	
		Answer	
21	(b)	Work out the value of <i>y</i> when $x = 25$	
	(6)	[2 marks]	
		Answer	
		Turn over for the next question	
			11


Turn over ►



26	$f(x) = \frac{x}{x+2}$ $g(x) = x^{2} - 2$ Work out fg(x) Give your answer in the form $a + bx^{n}$ where a, b and n are integers.		o not write butside the box
27	Answer Answer The point $\left(3, \frac{1}{64}\right)$ lies on the curve $y = k^x$ where k is a constant.		
	Show that the point $\left(\frac{1}{2}, \frac{1}{2}\right)$ lies on the curve.	[3 marks]	11



22

		Do not write outside the
28 (b)	When Izzy finishes the 80-metre race, her speed is v m/s	box
	Work out the value of <i>v</i> .	
	[4 marks]	
	Answer	
	END OF QUESTIONS	
		6
ı <u> </u>		

Copyright © 2018 AQA and its licensors. All rights reserved.

