GCSE
MATHEMATICS
8300/2H
Higher Tier Paper 2 Calculator
Mark scheme
November 2018
Version: 1.0. Final
I8bG83002H/MS

MARK SCHEME - GCSE MATHEMATICS - 8300/2H - NOVEMBER 2018

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep \quad A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments

| $\mathbf{1}$ | A and B | B1 | |
| :--- | :--- | :---: | :---: | :---: |
| | Additional Guidance | | |
| | | | |

| $\mathbf{2}$ | $(1,5)$ | B1 | |
| :--- | :--- | :---: | :---: | :---: |
| | Additional Guidance | | |
| | | | |

3	1392781	B1		
	Additional Guidance			

4	130°	B1		
	Additional Guidance			

| 5 | Pi or π | B1 | accept a value in range [3.14, 3.142] |
| :--- | :--- | :---: | :---: | :---: |
| | Additional Guidance | | |
| | Accept incorrect spelling if intention is clear eg accept pie | B0 | |
| | Answer $(C=) \pi d$ | B1 | |
| | Answer $(C=) \pi d \quad(k=) \pi$ | | |

Question	Answer	Mark	Comments

6(a)	$2.5 \times 12 \text { or } 30$ and $7.5 \times 7 \text { or } 52.5$ and $12.5(\times 1)$ or 95	M1	allow one incorrect midpoint or $[2,3] \times 12$ and $[7,8] \times 7$ and $[12,13](\times 1)$ ignore $t \geqslant 15$ row	
	$\begin{aligned} & \frac{\text { their } 30+\text { their } 52.5+\text { their } 12.5}{12+7+1} \\ & \text { or } 95 \div 20 \end{aligned}$	M1dep	$t \geqslant 15$ product must be 0 if seen condone bracket error seen eg $30+52.5+12.5 \div 20$	
	4.75	A1	accept 4.8 or 5 if full working shown using correct midpoints	
	Additional Guidance			
	Two correct from 30, 52.5 and 12.5 implies the first mark and could be used to score up to M2			M1
	Midpoints used in the ranges $[2,3],[7,8]$ and $[12,13]$ must be seen eg 2.5×12 and 7×7 and $12(\times 1)$ or 3×12 and 7×7 and $13(\times 1)$ NB These could be used to score up to M2			M1
	Correct products seen in the table but a different method shown in the working lines eg $20 \div 4=5$			M0

$\mathbf{6 (b)}$	Lower than part (a)	B 1		
	Additional Guidance			

Question	Answer	Mark	Comments

Alternative method 1			
$35 x+6 x=a x$ or $35+6=a$ or $41 x=a x$	M1		
$a=41$	A1		
$40+3 b=13$	M1	oe	
$b=-9$	A1	SC3 $a=41, b$	$a=41, b=$
Alternative method 2			
$\begin{aligned} & 35 x+40+6 x+3 b \\ & \text { or } 41 x+40+3 b \end{aligned}$	M1		
$35 x+6 x=a x \text { or } 35+6=a$ and $40+3 b=13$	M1dep	oe eg $41 x=a x$ and $3 b=-27$	
$a=41$	A1	implies first M1	
$b=-9$	A1	SC3 $a=41, b$	$a=41, b=$
Additional Guidance			
$a=41$ and $b=-9$			M1A1M
$a=41$ or $b=-9$			M1A
$35 x, 40,6 x$ and $3 b$ seen without addition signs shown or implied			M0
$35 x+40+6 x+\boldsymbol{b}$ leading to an answer of $a=41$ and $b=-27$			SC3
$35 x+8+6 x+3 b$ leading to an answer of $a=41$ and $b=\frac{5}{3}$			SC3
$35 x+8+6 x+\boldsymbol{b}$ leading to an answer of $a=41$ and $b=5$			M1A
$a=41 x$			M0
For $\frac{5}{3}$ accept $1.66 \ldots$ or 1.67			
Condone multiplication signs eg $35 \times x$ for $35 \times$			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

Alternative methods and Additional Guidance continued on the next two pages

Question	Answer	Mark	Comments

$\begin{gathered} 9 \\ \text { cont } \end{gathered}$	Alternative method 3 comparing with 14 litres per minute		
	$180 \div 135 \text { or } 180 \div 7.5$ or $79.8 \div 135 \text { or } 79.8 \div 7.5$	M1	oe or reciprocals
	$\frac{7.5 \times 135}{180}$ or 5.625 or $\frac{79.8 \times 180}{135} \text { or } 106.4$	M1dep	oe or reciprocals
	$\frac{79.8 \times 180}{7.5 \times 135}$ or [14.18, 14.19]	M1dep	oe
	No and [14.18, 14.19]	A1	
	Alternative method 4 comparing new rate of flow with rate required		
	$135 \div 180$ or $14 \div 180$	M1	oe or reciprocals
	$\frac{14 \times 135}{180}$ or 10.5	M1dep	oe
	$79.8 \div 7.5$ or 10.64	M1	oe
	No and 10.5 and 10.64	A1	
	Alternative method 5 comparing with 135 degrees		
	$180 \div 14 \text { or } 180 \div 7.5$ or $79.8 \div 14 \text { or } 79.8 \div 7.5$	M1	oe or reciprocals
	$180 \div 14 \text { and } 79.8 \div 7.5$ or $180 \div 7.5 \text { and } 79.8 \div 14$	M1dep	oe or matching reciprocals
	$\frac{79.8 \times 180}{7.5 \times 14}$ or 136.8	M1dep	dep on M2
	No and 136.8	A1	

Additional Guidance continued on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 9 \\ \text { cont } \end{gathered}$	Additional Guidance	
	No may be implied eg It takes more	
	7.3(0) used for 7.5 may score up to M3	
	$7 \frac{1}{2}$ minutes converted to $7.3(0)$ or 7 minutes 50 seconds	A0
	Ignore incorrect conversion of 7.6 to minutes and seconds if 7.6 seen	
	Use the scheme that awards the most marks and ignore choice	

Question	Answer	Mark	Comments

	$\begin{aligned} & 4 x+5=6 x-10 \\ & \text { or } 4 x+5=10(x-4) \\ & \text { or } 6 x-10=10(x-4) \end{aligned}$	M1	$\begin{aligned} & \text { oe } \\ & \text { eg } 4 x+5+6 x-10=2 \times 10(x-4) \end{aligned}$ condone $10 x-4$ for $10(x-4)$
	$\begin{aligned} & 4 x-6 x=-10-5 \\ & \text { or }-2 x=-15 \\ & \text { or } 4 x-10 x=-40-5 \\ & \text { or }-6 x=-45 \\ & \text { or } 6 x-10 x=-40+10 \\ & \text { or }-4 x=-30 \end{aligned}$	M1dep	$\begin{aligned} & \text { oe collection of terms } \\ & \text { eg } 4 x+6 x-20 x=-80-5+10 \\ & \text { or }-10 x=-75 \\ & \text { condone } 10 x-4 \text { for } 10(x-4) \\ & \text { eg } 4 x-10 x=-4-5 \\ & \text { or } 6 x-10 x=-4+10 \end{aligned}$
10	$(x=) 7.5$	A1	oe may be implied by (side length =) 35 or (perimeter =) 105
	$(6 \times \text { their } 7.5-10) \times 3$ or $(4 \times \text { their } 7.5+5) \times 3$ or $10 \times($ their $7.5-4) \times 3$ or 35×3 or $6 \times$ their $7.5-10+4 \times$ their $7.5+5$ $+10 \times($ their $7.5-4)$ or $20 \times$ their $7.5-45$ or 105	M1dep	oe dep on M1M1 condone $10 x-4$ for $10(x-4)$ must show working if M1M1A0
	105 and Yes	A1	oe eg 1.05 and Yes
	Additional Guidance		
	$4 x+5=6 x-10=10(x-4)$		M1
	Condone 10x-4 for 10(x-4) for up to M3		

Question	Answer	Mark	Comments

11	3.041...	M1	condone 3.	
	$\begin{aligned} & 3.14-3.041 \ldots=0.09 \ldots \\ & \text { or } \\ & 3.041 \ldots+0.1=3.141 \ldots \\ & \text { or } \\ & 3.041 \ldots \text { and } 3.14-0.1=3.04 \end{aligned}$	A1	oe condone 3	
	Additional Guidance			
	Must see calculation for the A mark			
	Do not allow use of a more precise value of π for the A mark			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

14	$3 n$	B 1		
	Additional Guidance			

15	Alternative method 1		
	$45 \div(22+3)$ or $45 \div 25$ or 1.8	M1	$\text { oe eg } \frac{45}{25}$
	$22 \times$ their 1.8 or 39.6 or $3 \times$ their 1.8 or 5.4	M1dep	
	their $39.6 \times 8.96+$ their 5.4×7.31 or $[354,355]+[39,40]$	M1dep	
	394.29 or 394.3	A1	
	Alternative method 2		
	$45 \div(22+3)$ or $45 \div 25$ or 1.8	M1	$\text { oe eg } \frac{45}{25}$
	their 1.8×8.96 or [16.1, 16.13] or their 1.8×7.31 or [13.1, 13.2]	M1dep	
	$\begin{aligned} & \text { their }[16.1,16.13] \times 22 \\ & + \text { their }[13.1,13.2] \times 3 \\ & \text { or }[354,355]+[39,40] \end{aligned}$	M1dep	
	394.29 or 394.3	A1	

Alternative method and Additional Guidance continued on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 15 \\ \text { cont } \end{gathered}$	Alternative method 3		
	$45 \div(22+3)$ or $45 \div 25$ or 1.8	M1	$\text { oe eg } \frac{45}{25}$
	$\begin{aligned} & 22 \times 8.96 \text { or }[197,197.12] \\ & \text { or } \\ & 3 \times 7.31 \text { or }[21.9,22] \end{aligned}$	M1	
	$\begin{aligned} & \text { their }[197,197.12] \times \text { their } 1.8 \\ & + \text { their }[21.9,22] \times \text { their } 1.8 \\ & \text { or }[354,355]+[39,40] \end{aligned}$	M1dep	oe dep on M1M1
	394.29 or 394.3	A1	
		itional	idance
	Allow up to M2 even if not subseq	tly used	
	Ignore units throughout		

16(a)	106	B1		
	Additional Guidance			

Question	Answer	Mark	Comments

16(b)	$50-42 \text { or } 8$ or $\frac{42}{50}$ or $\frac{21}{25}$ or 0.84 or 84%	M1	oe	
	$\frac{8}{50}$ or $\frac{4}{25}$ or 0.16 or 16%	A1	oe	
	Additional Guidance			
	Ignore incorrect conversion if correct answer seen			
	$\frac{8}{42}$			M1A0

17	could be even or odd	B1		
	Additional Guidance			

Question	Answer	Mark	Comments

18(a)	$\frac{10}{10+7+3} \text { or } \frac{10}{20}$ or $\frac{5}{10}$ or $\frac{1}{2}$ or 0.5	M1	oe eg 50\%	
	$\frac{1}{8} \text { or } 0.125 \text { or } 12.5 \%$	A1	$\text { oe eg } \frac{1000}{8000} \text { or } \frac{125}{1000}$	
	Additional Guidance			
	Ignore incorrect conversion if correct answer seen			
	Answer $\frac{1}{2}$			M1
	10 out of 20			MO
	10:20			M0
	Answer 1 out of 8			M1A0
	Answer 1:8 is A0 but M1 is possible			
	$\begin{array}{lll}\frac{10}{20} & \frac{7}{20} & \frac{3}{20}\end{array}$			M1

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

20	$\begin{aligned} & \frac{6 n^{2}}{n}+2 n^{3} \text { or } 6 n+2 n^{3} \\ & \text { or } 6 n^{3}-6 n \end{aligned}$	M1	expands one bracket correctly allow $3 \times 2 n$ for $\frac{6 n^{2}}{n}$
	$\frac{6 n^{2}}{n}+2 n^{3}+6 n^{3}-6 n$ or $6 n+2 n^{3}+6 n^{3}-6 n$	M1dep	fully correct expansion allow $3 \times 2 n$ for $\frac{6 n^{2}}{n}$
	$8 n^{3}$ and (2n) ${ }^{3}$	A1	must have seen M1M1 oe eg $8 n^{3}$ and $2 n \times 2 n \times 2 n$ or $8 n^{3}$ and $\sqrt[3]{8 n^{3}}=2 n$ condone $8 n^{3}$ and $2^{3} n^{3}$
	Additional Guidance		
	Do not allow $\frac{2 n^{2} \times 3}{n}$ for $\frac{6 n^{2}}{n}$		

Question	Answer	Mark	Comments

21(a)	Alternative method 1			
	$y=\frac{k}{\sqrt{x}}$	M1	oe equation implied by $4=\frac{k}{\sqrt{9}}$ oe	
	$(k=) 4 \times \sqrt{9}$ or $(k=) 12$	M1dep	oe	
	$y=\frac{12}{\sqrt{x}}$	A1	oe equation	
	Alternative method 2			
	$k y=\frac{1}{\sqrt{x}}$	M1	oe equation implied by $4 k=\frac{1}{\sqrt{9}}$	
	$(k=) \frac{1}{\sqrt{9}} \div 4 \quad$ or $\quad(k=) \frac{1}{12}$	M1dep	oe	
	$\frac{1}{12} y=\frac{1}{\sqrt{x}}$	A1	oe equation	
		Itional	idance	
	Alt $1 \quad(k=) 12$ or ($k \alpha$) 12	correct	rking	M1M1
	Condone use of α for up to eg (Alt 1) $y a \frac{k}{\sqrt{x}}$ ka 12 $y \propto \frac{12}{\sqrt{x}}$			M1 M1dep A0
	$y=\frac{12}{\sqrt{x}}$ oe			M1M1A1

Question	Answer	Mark	Comments

21(b)	$\frac{12}{\sqrt{25}}$ or $\frac{\text { their } k}{\sqrt{25}}$	M1	oe their k from (a)	
	2.4 or $\frac{12}{5}$ or $2 \frac{2}{5}$	A1ft	$\mathrm{ft} \frac{\text { their } k}{5}$	
	Additional Guidance			
	$y<2.4$			M1A0
	$\begin{aligned} & y=\frac{\frac{4}{3}}{\sqrt{x}} \text { in (a) } \\ & \frac{\frac{4}{3}}{\sqrt{25}} \\ & \left.\frac{4}{15} \text { (allow }[0.266,0.267]\right) \end{aligned}$			M1 A1ft

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

23	$-\frac{1}{3} \mathbf{a}$	B1		
	Additional Guidance			

Question	Answer	Mark	Comments

25	$\tan 49=\frac{A C}{16}$	M1	oe eg $\tan (90-49)=\frac{16}{A C}$ or $A C^{2}+16^{2}=\left(\frac{16}{\cos 49}\right)^{2}$	
	$\tan 49 \times 16$ or [18.4, 18.41]	M1dep	$\begin{aligned} & \text { oe eg } \frac{16}{\tan (90-49)} \\ & \text { or } \sqrt{\left(\frac{16}{\cos 49}\right)^{2}-16^{2}} \end{aligned}$	
	$\begin{aligned} & \frac{\sin x}{\text { their }[18.4,18.41]}=\frac{\sin 35}{20} \\ & \text { or } \\ & \frac{\text { their }[18.4,18.41]}{\sin x}=\frac{20}{\sin 35} \end{aligned}$	M1dep	oe eg $\frac{\sin x}{16 \tan 49}=\frac{\sin 35}{20}$ dep on 1st M1	
	$\sin x=\frac{\sin 35}{20} \times$ their $[18.4,18.41]$	M1dep	oe eg $\sin x=\frac{16 \tan 49 \sin 35}{20}$ or $\sin ^{-1}\left(\frac{\sin 35}{20} \times\right.$ their $\left.[18.4,18.41]\right)$ or $\sin ^{-1}$ [0.527, 0.528] dep on 1st and 3rd M1	
	[31.8, 31.9]	A1	allow 32 with full method seen	
	Additional Guidance			
	Answer [31.8, 31.9] possibly from scale drawing			5 marks
	Answer 32 possibly from scale drawing			Zero

Question	Answer	Mark	Comments

26	$\frac{x^{2}-2}{x^{2}-2+2}$ or $\frac{x^{2}-2}{x^{2}}$	M1	
	$\frac{x^{2}}{x^{2}}-\frac{2}{x^{2}}$ or $1-\frac{2}{x^{2}}$	A1	implied by correct final answer must be two terms oe eg $x^{2} x^{-2}-2 x^{-2}$
	$1-2 x^{-2}$ or $a=1$ and $b=-2$ and $n=-2$	A1	
	Additional Guidance		

27	$\frac{1}{64}=k^{3} \quad \text { or } \quad \sqrt[3]{\frac{1}{64}}$	M1	oe equation in k
	$(k=) \frac{1}{4}$ or $(k=) 0.25$	A1	must see working for M1 implied by $y=\left(\frac{1}{4}\right)^{x}$ $\left(\frac{1}{4}\right)^{3}=\frac{1}{64}$ is M1A1
	$\left(\frac{1}{4}\right)^{\frac{1}{2}}=\frac{1}{2} \text { or } 0.25^{\frac{1}{2}}=0.5$	A1	must see working for M1A1 allow $\sqrt{\frac{1}{4}}=\frac{1}{2}$ or $\sqrt{0.25}=0.5$
	Additional Guidance		

Question	Answer	Mark	Comments

28(a)	0.25 or $\frac{1}{4}$ or $\frac{2}{8}$	B1	
	$\mathrm{m} / \mathrm{s}^{2}$ or ms^{-2} or $\mathrm{m} / \mathrm{s} / \mathrm{s}$ or $\frac{\mathrm{m}}{\mathrm{s}^{2}}$	B1	oe eg metres per second per second SC2 acceleration and unit not in $\mathrm{m} / \mathrm{s}^{2}$ eg $25 \mathrm{~cm} / \mathrm{s}^{2}$ or $3240 \mathrm{~km} / \mathrm{h}^{2}$
	Additional Guidance		
	$\frac{2}{14-6}$ with no further simplification		(1st) B0

28(b)	Alternative method 1		
	$\begin{aligned} & \frac{1}{2} \times 6 \times(v-2) \\ & \text { or } \frac{1}{2} \times(14-6) \times(v+v-2) \\ & \text { or }(14-6) \times(v-2) \\ & \text { or } \frac{1}{2} \times(14-6) \times 2 \text { or } 8 \end{aligned}$	M1	oe partial area any letter
	$\begin{aligned} & \frac{1}{2} \times 6 \times(v-2) \\ & +\frac{1}{2} \times(14-6) \times(v+v-2) \\ & \text { or } 3(v-2)+8(v-2)+8 \\ & \text { or } 11 v-14 \end{aligned}$	M1dep	oe full area in one variable $\begin{aligned} & \text { eg } 14 \times v-\frac{1}{2} \times 6 \times(v-2) \\ & -\frac{1}{2} \times 2 \times(6+14) \end{aligned}$ implies M2
	$\begin{aligned} & \frac{1}{2} \times 6 \times(v-2) \\ & +\frac{1}{2} \times(14-6) \times(v+v-2)=80 \end{aligned}$ or $94 \div 11$	A1	oe full area in one variable equated to 80
	$8.5(4 \ldots)$ or 8.55 or $\frac{94}{11}$ or $8 \frac{6}{11}$	A1	

Alternative method and Additional Guidance continued on the next page

Question	Answer	Mark	Comments

