

GCSE MATHEMATICS 8300/3H

Higher Tier Paper 3 Calculator

Mark scheme

November 2018

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comme	nts
	up	B1		
1	Ac	Iditional G	uidance	
	5	D4		
2	<u>5</u> 2	B1		
2	Ac	lditional G	uidance	
	8 <i>n</i> – 5	B1		
3 Additional Guidance			uidance	
	120	B1		
4	Ac	Iditional G	uidance	
	109.5 in the correct position	B1	oe	
	110.5 in the correct position		oe	
		B1	• Allow 110.49	
5			answers reversed score	B0B1
	Ac	lditional G	Buidance	
	110.4999			B1
	110.4999			В0

Question	Answer	Mark	Commer	nts
	Plots at least 3 points correctly	M1	Plots within the correct square	2 mm vertical
6(a)	Fully correct with all points joined	A1		
	Ado	ditional G	uidance	
			B1	
	[4200, 4500]	B2	Any indication the 2018 figure is being increased for 2019	
			eg a point plotted for 2019 that is greater than 3780	
24.	Ado	ditional G	uidance	
6(b)	Answer in range with or without worki	ng		B2
	4300 – 4350 on answer line (both values in range)			B2
	4400 – 4600 on answer line (one value in range)		e)	B1
	Answer outside of range but between 3780 and 4200			B1
	Answer outside of range but greater t	han 4500		B1

Question	Answer	Mark	Comme	nts
	Any correct value	M1	11, 23, 37, 53, 71, 91,	113, 137, 163
	Selects 91 as the only incorrect value with no errors in values given	A1	oe eg stops at 91	
	91 and 13 (is a factor) or 91 and 7 (is a factor) or 91 and 13 × 7	A1	oe eg 91 ÷ 7 = 13	
7	Additional Guidance			
	Ignore incorrect evaluations for first m	ark		
	Ignore all values for n greater than 9			
	Do not allow 11 within a list of prime n	umbers e	g 2, 3, 5, 7, 11	
	Error in list eg 12, 23, 37, 53, 71, 91, selected as not prime (not valid as inc	M1A0A0		
	Error in list eg 12, 23, 37, 53, 71, 91, 113, 137, 163 with only 91 selected as not prime (not valid as incorrect conclusion from their list)			M1A0A0
	$9^2 + 9 + 1 = 91$ is incorrect working			M0A0A0

Question	Answer	Mark	Comments		
	Alternative method 1				
	(600 ×) 0.8 or 480	M1	oe		
	600×0.8^2 or 384 or 600×0.8^3 or $307.2(0)$ or 600×0.8^4 or 245.76 or 600×0.8^5 or $[196, 197]$	M1dep			
	[196, 197] and incorrect	A1	oe eg 196.61 and no 196.61 still owed		
	Alternative method 2				
	600 × 0.2 or 120	M1	oe		
8	120 × 0.8 or 96 or 96 × 0.8 or 76.8(0) or 76.8(0) × 0.8 or 61.44 or 61.44 × 0.8 or [49.15, 49.16]	M1dep	oe eg (600 – 120) × 0.2 or 480 × 0.2		
	[403, 404] and incorrect	A1	oe eg paid off 403.39(2)		
	Alternative method 3				
	0.8	M1			
	0.8 ⁵ or 0.327 68 or 0.3277 or 0.328 or 0.33	M1dep			
	0.327 68 (or 0.3277 or 0.328 or 0.33) and incorrect	A1	oe		
	Additional Guidance				
	Ignore units				
	Full marks can be awarded for a correct explanation eg 120 and 96 calculated with a comment 'as soon as the payment is below 120 a month it cannot be paid off in five months'				

Question	Answer	Mark	Comme	nts
	$0.9 \times \pi \div 2 \text{ or } 0.9\pi \div 2 \text{ or } 0.45\pi$ or $0.9 \times [3.14, 3.142] \div 2$ or $[2.82, 2.83] \div 2$ or $2.8 \div 2$ or 1.4	M1	Large semicircle	
	$0.9 \div 3 \times \pi \div 2 \text{ or } 0.3\pi \div 2$ or 0.15π or $0.9 \div 3 \times [3.14, 3.142] \div 2$ or $0.94 \div 2$ or 0.47	M1	Small semicircle May be implied from usi small semicircles in next	
9	their 1.4 + 3 × their 0.47 + 2 × 0.75 or $0.9\pi + 2 \times 0.75$ or 2 × their 1.4 + 2 × 0.75	M1dep	oe dep on both marks	
	or 4.3 305 ÷ their 4.3 or [70.4, 70.94] 71 with working	M1dep	dep on previous mark	
	Ac	lditional G	Guidance	
	0.9π or 2.8 with no evidence of in	ncorrect me	ethod	M1M1
	0.45π ÷ 2			MO

Question	Answer	Mark	Commen	S
	Alternative method 1			
	$\frac{1}{2}x > 3 - 8$ or $\frac{1}{2}x > -5$ or $8 - 3 > -\frac{1}{2}x$ or $5 > -\frac{1}{2}x$ or $8 + \frac{1}{2}x > 3$	M1	oe	
10	x > -10	A1	oe -10 < x	
	Alternative method 2			
	16 > 6 - x or $16 - 6 > -x$ or $10 > -x$ or $x > 6 - 16$ or $16 + x > 6$	M1	oe	
	x > -10	A1	oe -10 < x	
	Ad	ditional G	uidance	
	Answer using incorrect sign eg $x < -x$	10 or <i>x</i> =	-10	M1A0

Question	Answer	Mark	Commer	nts
	$\cos x = \frac{9}{10}$	M1	oe eg $\sin x = \frac{\sqrt{10^2 - 9^2}}{10}$ $\tan x = \frac{\sqrt{10^2 - 9^2}}{9}$	
11	25.8 or 26	A1		
	Add	ditional G	uidance	
	$\cos = \frac{9}{10} x = 25.8 \text{ (recovered)}$			M1A1
	$\cos = \frac{9}{10}$			M0A0
12	Graph should be a curve	B1	oe eg Should not be straight lir Not a curve Not smooth Too straight Need more points plotte	
	Additional Guidance			
	200	B1		
13		ditional G	Guidance	

Question	Ans	wer	Mark	Comn	nents
	19 × 82 or 1558		M1		
	$\frac{\text{their } 1558 + 93}{20} \text{or} \frac{1651}{20}$		M1dep	oe	
14	82.55 or 82.6		A1		
		Ad	ditional G	Guidance	
	$2 \times \pi \times 8 \times 22$ or [1105, 1106]	r 352π	M1	Area of lampshade A oe $2 \times \pi \times 0.08 \times 0.22$ or [0.1105, 0.1106]	or 0.0352π
	$4 \times \frac{1}{2} \times 15 \times 24$ or 720		M1	Area of lampshade B oe $4 \times \frac{1}{2} \times 0.15 \times 0.24$	or 0.072
15	their $352\pi \div 100^2 \times 400$ or 14.08π or $[44.2, 44.24]$	their 720 ÷ 100 ² × 400 or 28.8(0)	M1dep	their $0.0352\pi \times 400$ or 14.08π or $[44.2, 44.24]$	their 0.072 × 400 or 28.8(0)
				dep on 1st M1	dep on 2nd M1
	their $14.08\pi + 3.50$ or $[47.7, 47.74]$ and their $28.8(0) + 7.5(0)$ or $36.3(0)$		M1dep	dep on M3 and metho both lampshades corr	
	1.3(1):1 or 1	1.32 : 1	A1		
		Ad	ditional G	Guidance	
	1 : 1.3(1) or	1 : 1.32			M4A0

Question	Answer	Mark	Comments		
	Alternative method 1				
	0.38 × 50 or 19	M1	oe		
	0.6 × 80 or 48	M1	oe		
	their 19 + their 48 $50 + 80$ or $\frac{67}{130}$	M1dep	oe		
	0.51(5) or 0.52 or $\frac{67}{130}$ and $(67 \times 2 =) 134$ or $\frac{67}{130}$ and $(130 \div 2 =) 65$	A1	oe		
	Alternative method 2				
16	0.38 × 50 or 19	M1	oe		
	0.6 × 80 or 48	M1	oe		
	0.5 × (50 + 80) or 65	M1dep	oe		
	65 and 67	A1			
	Alternative method 3				
	0.38 × 50 or 19	M1	oe		
	0.5 × (50 + 80) or 65	M1	oe		
	$\frac{\text{their } 65 - \text{their } 19}{80}$ or $\frac{46}{80}$	M1dep	oe		
	0.575	A1			

Continues on next page

Question	Answer	Mark	Comments	
	Alternative method 4			
	0.6 × 80 or 48	M1	oe	
	0.5 × (50 + 80) or 65	M1	oe	
	$\frac{\text{their } 65 - \text{their } 48}{50}$ or $\frac{17}{50}$	M1dep	oe	
	0.34	A1		
	Alternative method 5			
16 cont	$\frac{50}{130}$ × 0.38 or 0.14 or 0.15	M1	oe	
	$\frac{80}{130}$ × 0.6 or 0.36 or 0.37	M1	oe	
	their 0.14 + their 0.36	M1dep	oe	
	0.51(5) or 0.52	A1		
	Ad	ditional G	Guidance	
	۵			
	$\frac{9}{25x}$	B1		
17	Additional Guidance			

Question	Answer	Mark	Comments	
	Any one of 8 ÷ 5 or 1.6 or 24 ÷ 10 or 2.4 or 30 ÷ 15 or 2 or 39 ÷ 30 or 1.3	M1	Implied by a correct bar	
	At least three of 1.6 and 2.4 and 2 and 1.3	M1dep	Implied by three correct bars	
	Fully correct histogram	A1	Tolerance $\pm \frac{1}{2}$ square	
18	ignore frequency polygon if drawn Additional Guidance			
	2.5 2.0 Frequency density 1.5 0.0 0 10 15 20 25 30 35 40 Age, x (y	45 50 55	3 marks	

Question	Answer	Mark	Commer	nts
	30.25 or 29.75 or 5.85 or 5.75	B1		
19	their 30.25 – their 5.75	M1	Must be their max roll – their max must be (30, 3 their min must be [5.5, 5	0.5]
	24.5	A1		
		Additional G	uidance	
	30.5 – 5.75 = 24.75			B1M1A0

	Alternative method 1				
	$2(-x-1)^2-5$	M1	oe		
			Replacing x with –x		
	$2(x^2 + x + x + 1) - 5$		oe expansion		
	or $2x^2 + 4x + 2 - 5$	M1dep			
	or $2x^2 + 4x - 3$				
	$y = 2x^2 + 4x - 3$	A1			
00	Alternative method 2				
20	$2(x^2 - x - x + 1) - 5$		oe expansion		
	or $2x^2 - 4x + 2 - 5$	M1	Multiplying out original e	xpression	
	or $2x^2 - 4x - 3$				
	$2(-x)^2 - 4(-x) - 3$		oe		
	or $2x^2 + 4x - 3$	M1dep	Replacing x with $-x$		
	$y = 2x^2 + 4x - 3$	A1			
	Additional Guidance				
	Using symmetry in y axis, $y = 2(x + 1)^2 - 5 \rightarrow y = 2x^2 + 4x - 3$			M1M1A1	

Question	Answer	Mark	Commer	nts
	1(h) 20 (min) and 50 (min) or $1\frac{20}{60}$ (h) or $1\frac{1}{3}$ (h) or 1.33(h) or $\frac{50}{60}$ (h) or $\frac{5}{6}$ (h) or 0.83(h)	B1	oe Journey time(s) at 10.20	am
	$6 \times \text{their } 1\frac{1}{3} \text{ or } 8$	M1	oe Priya's distance at 10).20 am
	their 8 ÷ their $\frac{50}{60}$ or 9.6	M1dep	oe Joe's speed in km/h	
	or 16.8 ÷ 8 or 2.1		Multiplier for distance co	mparison
	16.8 ÷ their 9.6 or 1.75(h)		oe	
	or 1(h) 45 (min) or 105 (min)		Joe's total journey time	
21	or $16.8 \div 8 \times 50 \ (\div 60)$ or $\frac{16.8 - \text{their } 8}{\text{their } 9.6} \text{or} \frac{8.8}{\text{their } 9.6}$	M1dep	Joe's journey time after	overtaking Priya
	or 0.91(6)(h) or 0.917(h) or 0.92(h) or 55(min)			
	11.15 (am)	A1	oe eg quarter past 11 (i	n the morning)
	Ac	Iditional (Guidance	
	If 11.15 comes from correct method but with premature rounding eg 8 ÷ 0.83 = 9.64 16.8 ÷ 9.64 = 1.743 h 1.743 × 60 = 104.58 minutes ie 11 : 14 : 58 so 11 : 15			B1M3A0
	8 km implies		B1M1	
	16.8 ÷ 6 or 2.8 with no further valid working			ВОМО

Answer	Mark	Comments				
$-0.3 \text{ or } -\frac{3}{10}$	B1					
-0.2027 or $-\frac{2027}{10000}$	B1ft	ft their –0.3				
Additional Guidance						
ft answer must be to at least 4 decimal places						
Note: if their –0.3 is –0.2027, then ft answer is –0.200 832 8						
	$-0.3 \text{ or } -\frac{3}{10}$ $-0.2027 \text{ or } -\frac{2027}{10000}$ Add ft answer must be to at least 4 decim	$-0.3 \text{ or } -\frac{3}{10}$ $-0.2027 \text{ or } -\frac{2027}{10000}$ B1ft Additional G ft answer must be to at least 4 decimal places	$-0.3 \text{ or } -\frac{3}{10}$ $-0.2027 \text{ or } -\frac{2027}{10000}$ $B1 \text{ ft their } -0.3$ $Additional Guidance$ $ft answer must be to at least 4 decimal places$			

	-0.20081	B1		
22/6)	Additional Guidance			
22(b)	Answer must be to exactly 5 decimal			
	-0.20083			

	Alternative method 1			
	48 ÷ 2 × 3 or 72	M1	oe	
	their 72 ÷ 2 or 36	M1dep	$\cos^{-1}\left(\frac{36}{141}\right)$ or 75.2	
23	141 ² – their 36 ² or 18 585	M1dep	ft their base ÷ 2 sin (their 75.2) = $\frac{h}{141}$ or tan (their 75.2) = $\frac{h}{\text{their 36}}$	
	$\sqrt{141^2 - \text{their } 36^2} \text{ or } \sqrt{18585}$	M1dep	141 × sin (their 75.2) or their 36 × tan (their 75.2)	
	[136.2, 136.4] or 136	A1		

Continues on next page

Question	Answer	Mark	Comments		
	Alternative method 2				
	141 ÷ 3 or 47	M1	oe		
	24 and their 47 × 2 or 24 and 94 or 12 and their 47	M1dep	$\cos^{-1}\left(\frac{24}{94}\right)$ or 75.2		
23 cont	their $94^2 - 24^2$ or 8260 or $\sqrt{8260}$ or 90.88 or their $47^2 - 12^2$ or 2065 or $\sqrt{2065}$ or 45.44	M1dep	$\sin (\text{their } 75.2) = \frac{h}{\text{their } 94}$ or $\tan (\text{their } 75.2) = \frac{h}{24}$		
	$\sqrt{\text{their } 94^2 - 24^2} \times 3 \div 2$ or $\sqrt{8260} \times 3 \div 2$ or 90.88 × 3 ÷ 2 or $\sqrt{\text{their } 47^2 - 12^2} \times 3$ or $\sqrt{2065} \times 3$ or 45.44 × 3	M1dep	their 94 × sin (their 75.2) × 3 ÷ 2 or 24 × tan (their 75.2) × 3 ÷ 2		
	[136.2, 136.35] or 136	A1			
	Ac	Iditional C	Guidance		
	Values may be seen on diagram in correct positions				

Question	Answer	Mark	Commen	ts
	$\frac{4}{3}\pi(2x)^3$ or $\frac{1}{3}\pi(3x)^2h$	M1	oe	
	$\frac{4}{3}\pi(2x)^3 = \frac{1}{3}\pi(3x)^2h$ or $\frac{4}{3}\pi 8x^3 = \frac{1}{3}\pi 9x^2h$	M1dep	oe Sets up equation	
24	$32x = 9h$ or $x = \frac{9}{32}h$ or $h = \frac{32}{9}x$ or $\frac{32}{3}r = 9h$ or $r = \frac{27}{32}h$ or $h = \frac{32}{27}r$ or $27h = 32r$	M1dep	oe linear equation or ration	0
	or $\frac{27}{32}h:h$ or $3x:\frac{32}{9}x$ or $\frac{27}{32}:1$ or $3:\frac{32}{9}$ or $0.84:1$ or $3:3.55$			
	27 : 32	A1 ditional G	uidanee	
	32 : 27	unional G	uluance	M1M1M1A0
	Note $\frac{4}{3}\pi(2)^3 = [33.49, 33.52]$ $\frac{1}{3}\pi(3)^2h = [9.42h, 9.43h]$			WIWIIWITAO

Answer	Mark	Commer	nts	
B and C	B1			
Ad	ditional G	uidance		
y(x-4) = 2x + 3	M1	x(y-4) = 2y + 3		
yx - 4y = 2x + 3	M1dep	xy - 4x = 2y + 3		
yx - 2x = 4y + 3 or $x(y - 2) = 4y + 3$ or $x = \frac{4y + 3}{y - 2}$	M1dep	xy - 2y = 4x + 3 or $y(x - 2) = 4x + 3$		
$\frac{4x+3}{x-2}$	A1	oe Must be in terms of x		
Additional Guidance				
Ignore any attempt to give the domain	of f ⁻¹			
$x^2 + (3x + p)^2 = 53$	M1	oe		
$9x^2 + 3xp + 3xp + p^2$ or $9x^2 + 6xp + p^2$	M1	Expands $(3x + p)^2$ correct	ctly	
$x^{2} + (3x + p)^{2} = 53$ and $x^{2} + 9x^{2} + 3xp + 3xp + p^{2} = 53$ and $10x^{2} + 6px + p^{2} - 53 = 0$ or $x^{2} + (3x + p)^{2} = 53$ and $x^{2} + 9x^{2} + 6xp + p^{2} = 53$ and $10x^{2} + 6px + p^{2} - 53 = 0$	A1			
Additional Guidance				
	Ad $y(x-4) = 2x + 3$ $yx - 4y = 2x + 3$ $yx - 2x = 4y + 3$ or $x(y-2) = 4y + 3$ or $x = \frac{4y+3}{y-2}$ Ad Ignore any attempt to give the domain $x^2 + (3x + p)^2 = 53$ $9x^2 + 3xp + 3xp + p^2$ or $9x^2 + 6xp + p^2$ $x^2 + (3x + p)^2 = 53$ and $x^2 + 9x^2 + 3xp + 3xp + p^2 = 53$ and $10x^2 + 6px + p^2 - 53 = 0$ or $x^2 + (3x + p)^2 = 53$ and $10x^2 + 6px + p^2 - 53 = 0$ or $x^2 + (3x + p)^2 = 53$ and $10x^2 + 6px + p^2 - 53 = 0$	Additional G $y(x-4) = 2x + 3$ $yx - 4y = 2x + 3$ $yx - 2x = 4y + 3$ or $x(y-2) = 4y + 3$ or $x = \frac{4y + 3}{y - 2}$ Algore any attempt to give the domain of f^{-1} $x^2 + (3x + p)^2 = 53$ $2x^2 + (3x + p)^2 = 53$ and $x^2 + 9x^2 + 3xp + 3xp + p^2$ or $y^2 + 6xp + p^2$ $x^2 + (3x + p)^2 = 53$ and $y^2 + 3xp + 3xp + 3xp + p^2 = 53$ and $y^2 + 3xp + 3xp + 3xp + p^2 = 53$ and $y^2 + 3xp + 3xp + 3xp + p^2 = 53$ and $y^2 + 3xp + 3xp + 3xp + 3xp + p^2 = 53$ and $y^2 + 3xp + 3xp + 3xp + p^2 = 53$ and $y^2 + 3xp + 3xp + 3xp + p^2 = 53$ and $y^2 + 3xp + 3xp + 3xp + p^2 = 53$ and $y^2 + 3xp + 3xp + 3xp + 3xp + p^2 = 53$ and $y^2 + 3xp + 3xp + 3xp + 3xp + p^2 = 53$ and $y^2 + 3xp +$	Additional Guidance $y(x-4) = 2x + 3$ $yx - 4y = 2x + 3$ $yx - 2x = 4y + 3$ $or x(y-2) = 4y + 3$ $or x = \frac{4y + 3}{y - 2}$ $\frac{4x + 3}{x - 2}$ All oe Must be in terms of x Additional Guidance Ignore any attempt to give the domain of f^{-1} $x^2 + (3x + p)^2 = 53$ $and x^2 + 9x^2 + 3xp + 3xp + p^2 = 53$ $and 10x^2 + 6px + p^2 = 53$ and $10x^2 + 6px + p^2 = 53$	

Question	Answer	Mark	Commer	nts
	$7 = 3 \times 2 + p$ or $7 = 6 + p$ or $p = 1$	M1	oe Substitutes $x = 2$ into give $10(2)^2 + 6p(2) + p^2 - 53$ or $p^2 + 12p - 13 = 0$ or $(p-1)(p+13)$ or $p = 1$ (and $p = -13$)	
	$10x^{2} + 6x + 1 - 53 = 0$ or $10x^{2} + 6x - 52 = 0$ or $5x^{2} + 3x - 26 = 0$	M1dep	oe equation Substitutes their p into g	iven equation
	$(5x + 13)(x - 2)$ or $\frac{-3 \pm \sqrt{3^2 - 4 \times 5 \times -26}}{2 \times 5}$ or $-\frac{3}{10} \pm \sqrt{\frac{529}{100}}$	M1	oe Correct factorisation of t quadratic or correct substitution in 3-term quadratic or correct completion of expression for x	formula for their
27(b)	(x =) -2.6	A1	oe	
	(-2.6, -6.8)	A1	oe	
	Additional Guidance			
	After scoring first M1, they substitute $(p-1)(p+13)$ or $p=1$ (and $p=-13$)	e p = -13		M1
	$10x^{2} - 78x + 169 - 53 = 0$ or $10x^{2} - 78x + 116 = 0$ or $5x^{2} - 39x + 58 = 0$			M1dep
	$(5x - 29)(x - 2)$ or $\frac{-39 \pm \sqrt{(-39)^2 - 4 \times 5 \times 58}}{2 \times 5}$ or $\frac{39}{10} \pm \sqrt{\frac{361}{100}}$			M1dep A0 A0

Question	Answer	Mark	Comments
	gradient is negative	B1	
28	Ad	ditional G	uidance