		INTERNATIONAL EXAMINATIONS ficate of Secondary Education
	International General Certi BIOLOGY Paper 6 Alternative to Practical	ficate of Secondary Education
	Candidates answer on the Question Paper No Additional Materials are required	May/June 2006
Candidate Name		
Centre Number		Candidate Number

READ THESE INSTRUCTIONS FIRST

Write Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

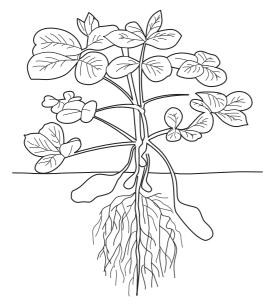
You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN THE BARCODE.

DO NOT WRITE IN THE GREY AREAS BETWEEN THE PAGES.

Answer all questions.


The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
Total	

1 Fig.1.1 shows a diagram of a groundnut plant, *Arachis hypogaea*.

rface. The flower stalks grow downwards so that the fruits develop below the soil surface.

Fig. 1.2 shows the mature fruits, one of which has been cut open.

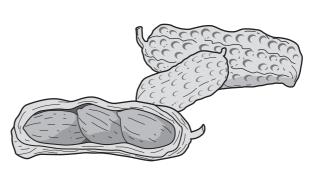
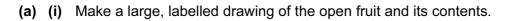



Fig. 1.2

(ii)	Measure the length of your drawing.
	Measure the length of the same structure in Fig. 1.2.
	Calculate the magnification of your drawing.
	Show your working.

Magnification

[3]

[5]

For iner's (b) A student investigated the energy content of a seed.

WANN, Papacambridge.com A seed was weighed and its mass recorded in Table 1.1. The seed was firmly attached to the end of a mounted needle. A large test tube containing 20 cm³ of water was held in a clamp stand, with a thermometer and a stirrer. The apparatus is shown in Fig. 1.3.

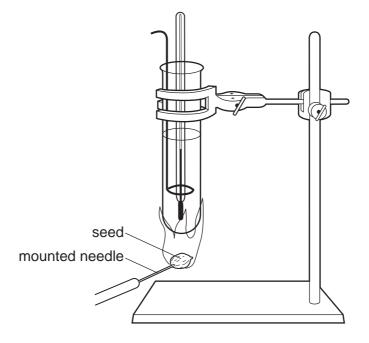


Fig. 1.3

- The temperature of the water at the start was recorded in Table 1.1.
- The seed was set alight by placing it in a flame for a few seconds.
- The burning seed was held under the test tube until the seed was completely burnt.
- The water was stirred immediately. The highest temperature of the water was recorded in Table 1.1.

wxtrapapers.com

(i) Complete	e Table 1.1 by c	5 calculating the rise	e in temperature	WANNA Baba	For iner's
		Table 1.	.1		iner's
mass of seed / g	volume of water / cm ³	temperature at the start /°C	highest temperature / °C	rise in temperature / °C	Se.com
0.5	20	29	79		

The energy contained in the seed can be calculated using the formula below.

energy = volume of water X rise in temperature X 4.2

mass of seed X 1000

(ii) Using the formula calculate the energy content of the seed.

Show your working.

Energy content	kJg⁻¹

[2]

	e method was u e shown in Tab		6 energy conten	t of some food	substance
		Та	ble 1.2		
food substance	mass of food burnt / g	starting temperature / °C	final temperature / °C	rise in temperature / °C	energy content /kJg⁻¹
starch	0.62	31	65	34	4.61
sugar	0.54	30	59	29	4.51
fat	0.56	30	90	60	9.00
protein	0.40	31	52	21	4.41

	Та	ble	1.	2
--	----	-----	----	---

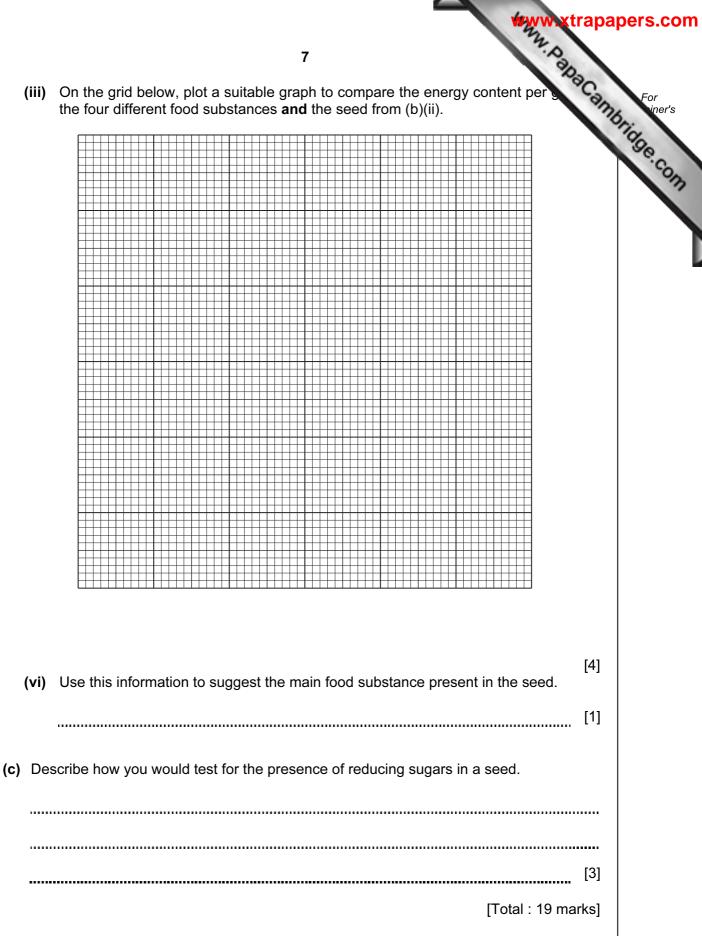
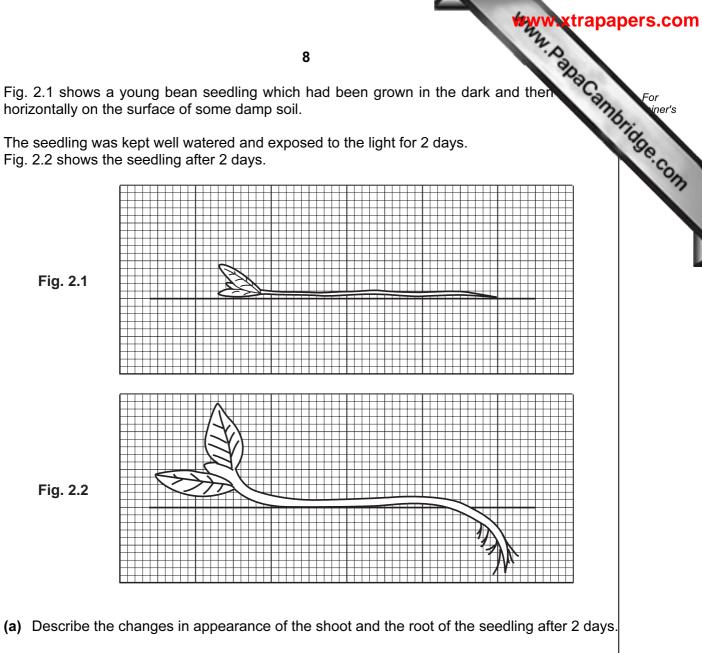



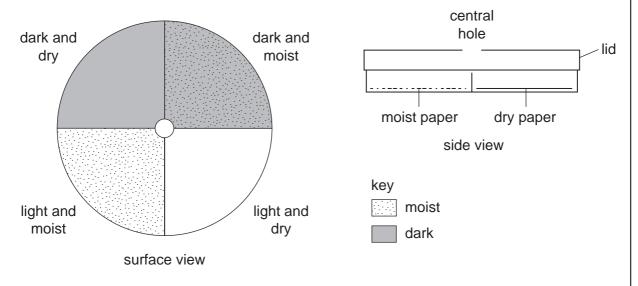
Fig. 2.1 shows a young bean seedling which had been grown in the dark and then 2 horizontally on the surface of some damp soil.

The seedling was kept well watered and exposed to the light for 2 days. Fig. 2.2 shows the seedling after 2 days.

(i)	shoot	
		•
]
(ii)	root	
		•
	[2]

8

	www.xtrapa	pers.com
	9	
(b)	9 Describe the processes involved in the changes of directional growth of the shot seedling.	For iner's
		Se.com
	[6]	
	[Total : 10]	


- 3 Fig 3.1 shows a choice chamber.
- rates, such This apparatus can be used to study the behaviour of small invertebrates, such woodlice, in different conditions.
 - 60 woodlice were introduced through the central hole.
 - The four sections of the choice chamber had different conditions as shown in Fig. 3.1.

dark and dry

dark and moist

light and dry

light and moist

- The choice chamber was left undisturbed for 10 minutes.
- The numbers of woodlice in each section were counted.
- The numbers were recorded in Table 3.1.
- These woodlice were released into their natural environment.
- The investigation was repeated with three more samples of woodlice.

10

(a) (i)


Table 3.1

		11		WWWARD	abaCambra
		Table 3.1			101
sample of woodlice	dark and dry	dark and moist	light and dry	light and moist	
1st	8	47	1	4	
2nd	4	56	0	0	
3rd	5	52	1	2	
4th	7	49	2	2	
total		204		8	
average		51		2	

Complete Table 3.1. The calculations for the moist sections have been completed for you.

[2]

(ii) Plot the average number of woodlice in each condition on the **pie chart** below.

[3]

		www.xtrapa
		12
(b)	(i)	State which conditions the woodlice prefer.
		N
	(ii)	12 State which conditions the woodlice prefer. Suggest how this behaviour might help the woodlice to survive in their natural habitat.
		[2]
(c)	Su	ggest how you could improve this investigation to make the results more reliable.
	•••••	[3]
		[Total 11]

Copyright Acknowledgements:

Question 1Fig. 1.1 © S. Harrison; Oxford Book of Food Plants; Oxford University Press; 1969. By permission of Oxford University Press.Question 1Fig. 1.2 © A. King; Agriculture: An Introduction for Southern Africa; Cambridge University Press; 1985.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.