

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDAT NUMBER	E
* 5 8 4 8 6 9 5 7 3 2	Biology		0610/52
	Paper 5 Practic	al Test	May/June 2011
	Candidates ans	1 hour	
	Additional Mater	ials: As listed in the Confidential Instructions	
*	READ THESE I	NSTRUCTIONS FIRST	

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters, glue or correction fluid.DO NOT WRITE IN ANY BARCODES.

Answer **both** questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
Total		

This document consists of 10 printed pages and 2 blank pages.

For Examiner's Use

1 You are going to carry out a test for vitamin C.

You are provided with three vitamin C solutions, **S1**, **S2** and **S3**.

S1 has a concentration of 0.2% vitamin C. **S2** has a concentration of 0.05% vitamin C. The concentration of **S3** is not known.

Read all the instructions before you begin work.

Proceed as follows:

- Measure 1 cm³ of starch solution into a test-tube.
- Add 1 cm^3 of solution **S1**.
- Shake gently to mix.

Prepare a table in which to record your observations, in the space in question 1(a).

You are going to add iodine solution to the mixture, drop by drop. You should count every drop that you add.

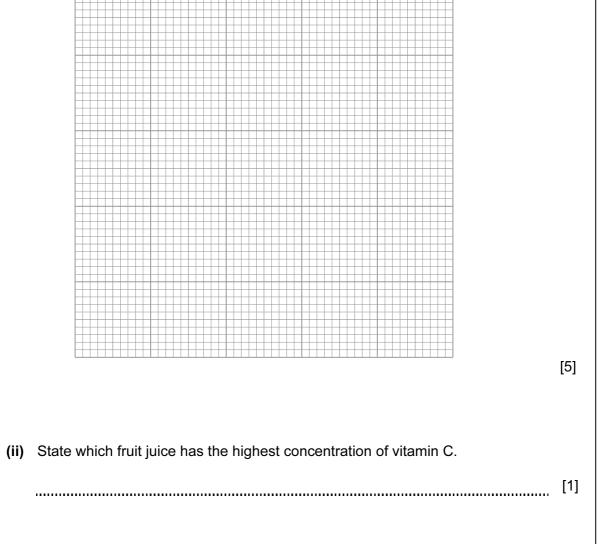
- Add one drop of iodine solution and shake gently to mix.
- Keep adding iodine solution, drop by drop, until a blue colour appears. This is the endpoint for solution S1.
- Repeat the test on solutions **S2** and **S3**.
- (a) Record your observations in the table that you have prepared.

[5]

For Examiner's Use

(b)	se your results to suggest the approximate vitamin C concentration of S3.		
	Give reasons for your answer.		
	[3]		
(c)	Suggest four ways in which you could improve this method to find the concentration of an unknown vitamin C solution.		
	1.		
	2.		
	3.		
	4.		
	[4]		

For


Examiner's Use

(d) Fig. 1.1 shows the results of a similar investigation into the concentration of vitamin C in five fruit juices. The numbers are the number of drops of iodine solution used to reach the end-point for each fruit juice.

Blackcurrant 48 Pineapple 5 Orange 16 Lemon 12 Strawberry 22

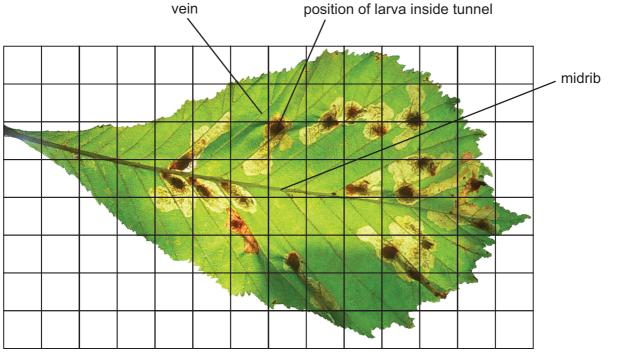
(i) On the grid below plot the data from Fig. 1.1 to show the variation in the number of drops of iodine solution required to reach the end-point.

(iii)	Explain how you used the results in (a) and the fruit juice data to decide which fruit juice has the highest concentration of vitamin C.	For Examiner's Use
-------	---	--------------------------

 [2]
[Total: 20]

2 Fig. 2.1 shows a photograph of the larva of an insect.

(a) (i) In the space below make a large drawing of the larva shown in Fig. 2.1.Labels are **not** needed.


For Examiner's Use

(ii)	Measure the length of the larva in Fig. 2.1 and in your drawing.			For Examiner's Use
	length of larva in Fig. 2.1			
	length of larva in your drawing		[2]	
(iii)	Calculate the magnification of your drawing compared with the larva in l	Fig. 2.1.		
	Show your working.			
	magnification		[2]	

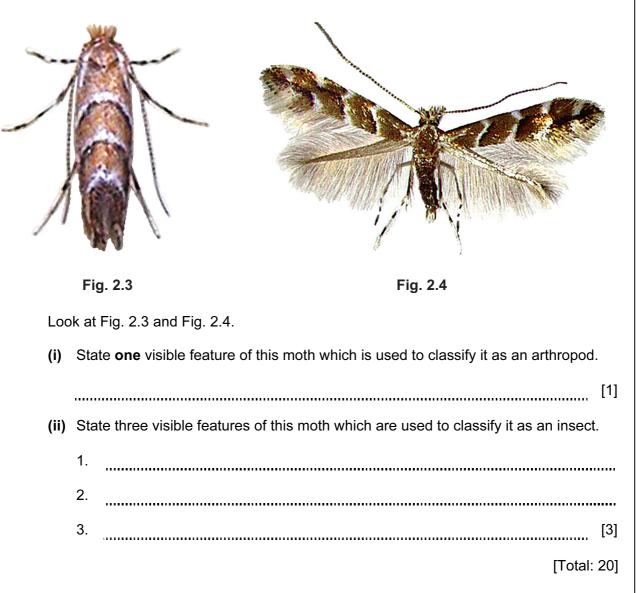
For Examiner's

Use

(b) The larva eats through leaf tissue making tunnels in which it lives. Fig. 2.2 shows part of a leaf that has been damaged by these tunnels.

(i) Calculate the percentage of the leaf area which has been damaged by the tunnels. Show your working.

> answer % [3]


For Examiner's Use

(ii) Suggest and explain why the tunnels do not extend across the leaf midrib.
[2]
(iii) Suggest two reasons why the leaf in Fig. 2.2 may die and fall off.
1.
2.
[2]

For Examiner's Use

(c) The larva in Fig. 2.1 becomes a moth.

Fig. 2.3 and Fig. 2.4 show the moth.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.