

MARK SCHEME for the May/June 2013 series

0439 CHEMISTRY (US)

0439/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

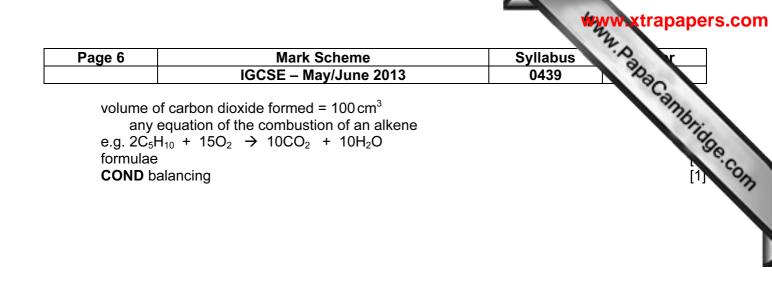
Page	2	Mark Scheme	Syllabus Syllabus
	-	IGCSE – May/June 2013	0439
(a) (i	, b	element cannot be broken into anything simpler by chemical means DR made up of one type of atom only	Syllabus 0439 r
(ii	t t	compound wo or more different elements chemically bonded together	[1] [1]
(iii	•	<i>nixture</i> wo or more substances not chemically joined together	[1]
(b) (i	i) n	nixture	[1]
(ii	i) c	compound	[1]
(iii	i) e	element	[1]
(c) co	ondı	uctivity (of heat or electricity)	[1]
			[Total: 9]
: (a) (i	i) la	arge / high surface area	[1]
	(igh collision rate / collide more / many collisions between oxygen molecules and aluminium atoms) IOT faster collisions	[1]
(ii	,	concentration of reactants decreases	[1] [1]
	а	allow one mark ONLY for:	

for reactants used up **or** amount of reactant decreases

(iii) any three of four from one strand:

M1	increase ir	i temperature
M2	molecules move faster or	particles have more energy
М3	higher co	ollision rate
M4	more successful collisions or	more particles have enough energy to react/ <i>E</i> _a

[3]


(b) (i) flour or wood dust or coal dust or carbon or sugar

				www.xtra	pap
	Pag	je 3	Mark Scheme	Syllabus	<u>v</u>
			IGCSE – May/June 2013	0439 23	1
			any three from: powder and larger pieces / different sized particles u suitable named solid, e.g. magnesium suitable named solution, e.g. named acid or copper result – powder reacts faster than larger pieces NOT Cu (with acid); K / Na with anything		In Brie
3 (a)	(i)	cars, ships, bridges, construction, white goods, screv	ws, nails, roofing, fencing, etc.	[1
	(e.g. stainless steel cooking utensils, surgical equipment, sinks or main u	JSE	[1 [1
()		carb	n oxygen NOT ai on dioxide <u>and</u> sulfur dioxide (escape as gases)	ir	[1 [1
		add ALL	ID on reaction with air / oxygen calcium oxide / quicklime OW calcium carbonate, limestone		[1
		reac	sphorus oxide or silicon oxide (are acidic) ts (with calcium oxide / CaCO ₃) rm slag / calcium silicate		[1 [1
4 (a)	(i)	any ambiguous formula, e.g. GeH_3 -GeH ₂ -GeH ₃		[1
	(Ge _n H _{2n+2} NOT C instead of Ge		[1
(CON	ect formula ID 4bps around germanium atom ID 3nbps and 1bp around each chlorine atom		[1 [1
(*	-	two g	oxygen atoms around each germanium atom germanium atoms around each oxygen atom hedral		[1 [1 [1
(CON	ation ID increase in oxidation number EPT: electron loss		[´ [´

		**	ww.xtrapapers.com		
	Page 4	Mark Scheme Syllabus	N.D.		
		IGCSE – May/June 2013 0439	1020		
5	(a) (i)	any Group 1 metal ACCEPT: lithium	ambrid		
	(ii)	$2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$ PbO [1] COND balancing [1]	www.xtrapapers.com		
	(iii)	the metal in a (i) is more reactive than lead	[1]		
		more reactive metals have more stable compounds			
		OR has stronger (ionic) bonding	[1]		
	(b) (i)	speed / rate of forward reaction = speed / rate of back reaction OR macroscopic properties do not change / constant (with time)	[1]		
	(ii)	(ii) goes darker OR goes brown			
		COND lower pressure favours side with more moles COND this is NO ₂ side OR reactant side OR goes left	[1] [1]		
	(iii)	exothermic	[1]		
		low temperatures favour the exothermic reaction or low temperatures moves equilibrium to right / product side / towards N ₂ C	D ₄ [1]		
	(iv)	forward reaction is bond forming	[1]		
6	(a) (i)	measure melting pointNOT just heatingpure sample would melt at 135 °COR impure would melt lower than 135 °C	[1] [1]		
	(ii)	C ₃ H ₄ O ₄	[1]		
	(iii)	C ₂ H ₄ O ₂ OR CH ₃ COOH	[1]		
	(,	ethanoic OR acetic acid both marks are independent of each other	[1]		
	(iv)	ester NOT organic, covalent	[1]		
	(b) (i)	malonic is a weaker acid/less dissociated OR sulfuric acid is a stronger acid/more dissociated NOT sulfuric acid is a strong acid	[1]		

	Mark Scheme	Syllabus Syllabus	
Page 5	IGCSE – May/June 2013	0439	030
(ii)	add piece of suitable metal, e.g. Mg ALLOW Al, Ca	NOT K, Na, Cu	trapape bacambhr
	sulfuric acid reacts faster OR malonic reacts slower		1
	OR as above add a piece of CaCO ₃ , if soluble carbonate	then [1] only	
	OR measure electrical conductivity sulfuric acid is the bett er conductor		[1
	OR malonic acid poorer conductor NOT sulfuric acid is a good conductor		[1
c) (i)	sodium malonate <u>and</u> water		[1
(ii)	CuSO ₄ H ₂ O		[2
(iii)	CH ₂ (COO) ₂ Mg H ₂		[2
(iv)	K_2SO_4 CO ₂ and H ₂ O NOT H ₂	2CO3	[2
			[Total: 16
) (i)	a compound which contains carbon and hydrogen o	<u>ılv</u>	[1
(ii)	alkanes contain only C-C single bonds or they are saturated (hydrocarbons) or have the general formula C_nH_{2n+2}		[1
	alkenes contain at least one C=C double bond or they are unsaturated (hydrocarbons)		
	or have the general formula C_nH_{2n}		[1
b) C ₂₀ ł	$H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$		[1
:) (i)	any unambiguous structure of BrCH ₂ CH ₂ Br NOT just $C_2H_4Br_2$		[1
(ii)	CH₃-CH=CH-CH₃ For any butene [1] only		[2
(iii)	$(CH_3-CH_2-CH=CH_2) + H_2O [1] \rightarrow CH_3-CH_2-CH_2-CH$ ALLOW $CH_3-CHOH-CH_2-CH_3$ butene reacts with water/steam (to form butanol) ON		[2
(iv)	$C_6H_{12} + H_2 \rightarrow C_6H_{14}$ alkenes react with hydrogen [1] ONLY		[2

PA CAMBRIDGE

