CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0439 CHEMISTRY (US)

0439/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.xtrapapers.com

[5]

[Total: 8]

Syllabus

			IGCSE – October/November 2013 0439	120
1 ((a)	uranium	/ plutonium / thorium	Dacambridge
((b)	graphite	/ carbon	13
((c)		/ titanium / mercury / gold rbon / graphite	[1]
((d)	helium		[1]
((e)	nitrogen	/ phosphorus	[1]
((f)	argon ACCEP1	Γ: any ion 2 + 8 + 8 e.g. K ⁺ etc.	[1]
((g)	tellurium ACCEP1	Γ: correct symbol	[1] [Total: 7]
2 ((a)	iron has iron has iron has NOTE: h		[3]

(b) potassium hydrogen (1) and potassium hydroxide (1) zinc hydrogen (1) and zinc oxide (1) copper no reaction (1)

Mark Scheme

Page 2

	Page 3		Mark Scheme	Syllabus
			IGCSE – October/November	2013 0439
3	(a)		fractional distillation (liquid) air	Syllabus 7 2013 0439 Table Cambridge
		(ii)	of alkane / petroleum to give an alkene and hydrogen	[1] [1]
			OR: electrolysis (1) named electrolyte (1) hydrogen at cathode (1)	
			OR: from methane (1) react water / steam (1) heat catalyst (1) only ACCEPT: water with methane or elect	trolysis
	(b)	(i)	the pair with both graphs correct is C NOTE: mark (b)(ii) independent of (b)(i)	[1]
		(ii)	high pressure favours side with lower voluithis is RHS / product / ammonia %NH ₃ / yield increases as pressure increases	[1]
			the forward reaction is exothermic exothermic reactions favoured by low temp %NH ₃ / yield decreases as temperature in ACCEPT : reverse arguments	
		(iii)	increases reaction rate ACCEPT: reduces activation energy OR: decreases the amount of energy parti	
			OR: economic rate at lower temperature so	Total: 14]
4	(a)	(i)	(mass at $t = 0$) – (mass at $t = 5$) NOTE: must have mass at $t = 5$ not final m	ass [1]
		(ii)	fastest at origin slowing down between origin and flat secti where gradrient = 0 three of above in approximately the correct	
		(iii)	3 correct comments about gradient = [2] 2 correct comments about gradient = [1] 1 correct comment about gradient = [0]	[2]
			r correct comment about gradient – [0]	[2]
	(b)		t at origin and smaller gradient ne final mass just approximate rather than e	[1] xact [1]

www.xtrapapers.com

Page 4		,	Mark Scheme	· A		
	. ago .			IGCSE – October/November 2013	Syllabus 0439	Apr.
	(c)	(i) (ii)	lowe	ller surface area er collision rate ecules have more energy		, Dana Cambridge
					energy to react	[1]
	(d)	con ma: ma:	centr ximur ss of	of moles of HCl in 40cm^3 of hydrochloric acid, ation 2.0mol / $dm^3 = 0.04 \times 2.0 = 0.08$ m number of moles of CO_2 formed = 0.04 one mole of $CO_2 = 44 \text{g}$ m mass of CO_2 lost = $0.04 \times 44 = 1.76 \text{g}$		[1] [1] [1] [1]
						[Total: 15]
5	(a)	(i)		e same molecular formula / both are C ₅ H ₁₂ have different structural formulae / different structu	res	[1] [1]
		(ii)	CH ₃ -	-CH ₂ -CH=CH-CH ₃ / any other correct isomer		[1]
	(b)	(i)	NOT	-(Br)-CH ₂ Br T: C ₂ H ₄ Br ₂ Dmoethane		[1]
			NOT	E: numbers not required but if given must be 1, 2		[1]
		(ii)		$-CH_2-CH_3$ $\Gamma: C_3H_8$		[1]
			prop	ane		[1]
		(iii)	buta	-CH $_2$ -CH $_2$ -CH $_2$ -OH / CH $_3$ -CH $_2$ -CH(OH)-CH $_3$ nol bers not required but if given must be correct and m	natch formula	[1] [1]
	(c)	(i)	_	-CH=CH-CH ₂ -CH ₃ -CH=CH-CH ₃		[1] [1]
		(ii)	colo	/ purple urless ī: clear		[1] [1]
	(d)	correct re		(CN)-CH ₂ -CH(CN)- epeat unit CH ₂ -CH(CN)		[1]
			ND: a	at least 2 units in diagram tion		[1] [1]
						[Total:16]

	Page 5		Mark Scheme Syllabus				
	. ago		IGCSE – October/November 2013 0439				
6	(a) (i)	and oppo	(negative) el osite charges	petween) positive ions ectrons attract ONLY [1] action ONLY [1]		us W. Papa Cambridge	
	(ii)	NOT	「: atoms / pro	vers of lead ions / cations / pos otons / nuclei ch other / the bonds are non-c		[1] [1]	
	(b) (i)	-	ydrous cobalt CEPT: hydrou	chloride becomes hydrated		[1]	
	(ii)		on dioxide is um hydroxide	acidic e and calcium oxide are bases	s / alkalis	[1] [1]	
	(iii)	 Any two of: water, calcium carbonate and sodium carbonate ACCEPT: sodium bicarbonate 				[2]	
	nu	(c) number of moles of CO_2 formed = 2.112 / 44 = 0.048 number of moles of H_2O formed = 0.432 / 18 = 0.024					
	X =	= 2 and	dy = 1 NOT:	ecf from this line			
	for	mula i	s 2PbCO ₃ .Pb	$p(OH)_2$ / $Pb(OH)_2$. $2PbCO_3$		[1]	
						[Total:12]	
7	(a) (i)		ogen (atoms : substitute) replaced by (atoms) of a diffe	erent element e.g. c	hlorine [1]	
	(ii)	light	required			[1]	
			nic reaction g mic reaction	ives out energy absorbs		[1]	
	tak	ces in c	energy			[1]	
				energy +412 +242 +654		[1]	
	C-	nds fo C <i>l</i> C <i>l</i>	rmed	energy -338 -431			
	tot en	al ene ergy c	hange	–769 –115 es exothermic		[1] [1] [1]	
						[Total: 8]	