CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0439 CHEMISTRY (US)

0439/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme Syllabus	ľ			
			IGCSE – May/June 2014 0439	1			
1	(a)	<u>A</u> , <u>I</u>	<u>O, E</u> (1)	dul.			
		Page 2 Mark Scheme Syllabus IGCSE – May/June 2014 0439 (a) A, D, E (1) same number of protons and electrons/electrically neutral (1)					
	(b) C (1)						
	more electrons than protons/36e ⁻ and 34p ⁺ /it has gained electrons (1)						
	(c)	= (1)	[1]				
	(d)	(d) they have same number of protons (1)					
		diff	erent number of neutrons/neutron number (1)	[2]			
			רו	Total: 7]			
2	(a)	(i)	filtration (1)				
			chlorination (1)	[2]			
		(ii)	Any two from:	[2]			
			 manufacture of ethanol used in the manufacture of sulfuric acid or in the Contact process manufacture of hydrogen or ammonia or for the Haber process 				
		(iii)	Any two from:	[2]			
		` ,	cookingwashing or laundry				
			• drinking				
			toiletswatering plants				
			(domestic) heating				
	(b)	boi	ling or turning to steam (1)				
		the	n condensing/condensation (1)	[2]			
			רו	Fotal: 7]			
3	(a)	(i)	(particles) spread to fill total available volume/move from high concentration to low concentration/moves down a concentration gradient (1)	[1]			
		(ii)	mass or M_r (1)	[1]			
		` '					
	(b)	(i)	helium atoms/molecules are lighter than molecules in air or N_2 and O_2 or helium is less dense than air or N_2 and O_2 .				
			or helium diffuses (through the porous barrier) faster than air or N_2 and O_2 . (1)	[1]			
			○ 2· (1)	[1]			

Page 3	Mark Scheme	Syllabus	.0	ľ
	IGCSE – May/June 2014	0439	100	

(ii) faster rate of diffusion/molecules move faster (at high temperatures). (1)

- (c) (i) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ (1)
 - (ii) would get a mixture of helium and carbon dioxideor would get a mixture of gasesor waste of methane/natural gas/fossil fuel (1)

(iii) <u>fractional</u> distillation (1) [1]

[Total: 7]

[1]

(a) (i)								
	Group number	I	II	III	IV	V	VI	VII
	symbol	Na	Mg	Αl	Si	Р	S	Cl
	number of valency electrons	1	2	3	4	5	6	7
	valency	1	2	3	4	3	2	1

(1) for each line [2]

- (ii) number of valency electrons = the group number (1) [1]
- (iii) for Na to Al

the valency is the same as the number of valency (outer) electrons (1)

(because) this is the number of electrons **lost** (for full energy level) (1)

for P to Cl

the valency is 8 – [number of valency (outer) electrons] **or** valency + valency electrons = 8 (1)

(because) this is number of electrons **needed** (or to be **gained**) (for full energy level) (1)

(b) (i) Assume change is from L to R unless clearly stated: basic to amphoteric to acidic (2)

(ii) ionic (metal) chlorides on the left (1) covalent (non-metal) chlorides on the right (1) [2]

[Total: 11]

[2]

	Page 4		<u> </u>	Mark Scheme Syllabus				
			•	IGCSE – May/June 2014	0439	Bo-		
5	(a)	. ,		c sulfide) heated/roasted/burnt in air (1) oxide formed (1)		Da Cambridge		
		М3	: zinc	oxide reduced (1)				
		M4	: (by a	adding) coke or carbon (1)				
		M5	: Bala	anced equation (any one of) (1)		[5]		
		2Zr Zn0	nO + O +	$3O_2 \rightarrow 2ZnO + 2SO_2$ $C \rightarrow 2Zn + CO_2$ $C \rightarrow Zn + CO$ $CO \rightarrow Zn + CO_2$				
	(b)	Any	/ two	from:		[2]		
		•	galv sacr	king) brass or alloys (1) ranising (1) rificial protection (1) eries (1)				
						[Total: 7]		
6	(a)	(i)	rate	at t_2 less than at t_1 or the rate decreases (1)				
			rate	at t ₃ zero/reaction stopped (1)		[2]		
		(ii)		at t_2 less than at t_1 because concentration of hydrogen peroxide is decreased				
			(rate	e at t ₃ zero/reaction stopped because) hydrogen pe	roxide is used up (1)	[2]		
	(b)	(i)		per and must come from the origin (1) volumes the same (1)		[2]		
		(ii)	stee faste	two from: eper curve because of a faster rate er rate because of increased surface area le amount/volume/mass/no of mol of hydrogen per	roxide	[2]		

ecf for M1 for a shallower curve because of slower rate.

Page 5	Mark Scheme	Syllabus	· A	V
	IGCSE – May/June 2014	0439	100	

(c) filter (and rinse/wash) (1)

dry manganese (IV) oxide (1)

weigh/measure mass manganese(IV) oxide after reaction (1)

the mass should be 0.1 g or unchanged. (1)

[4]

[3]

(d) number of moles of O_2 formed = 0.096/24 = 0.004 (1) number of moles of H_2O_2 in 40 cm³ of solution = 0.004 × 2 = 0.008 (1)

concentration of the hydrogen peroxide in $mol/dm^3 = 0.008/0.04 = 0.2$ (1)

[Total:15]

7 (a) (i)

aqueous solution	lead Pb	magnesium Mg	zinc Zn	silver Ag
lead (II) nitrate				
magnesium nitrate	Χ×		*	×
zinc nitrate	*	✓		×
silver(I) nitrate	✓	✓	✓	

each horizontal line correct (1)

[3]

(ii) Zn (1)

An arrow from Zn to Zn^{2+} (1)

[2]

(iii)
$$Zn + 2Ag^+ \rightarrow Zn^{2+} + 2Ag$$
 (1)

[1]

(b) (i) correct direction from zinc to lead (1)

[1]

(ii) metals react by losing electrons (1)

the more reactive metal/zinc will lose electrons more readily (making the electrode negatively charged). (1)

[2]

Page 6		e 6 Mark Scheme Syllabus			l _r
	. ago o		IGCSE – May/June 2014	0439	Back
	(iii)	man	ganese and zinc are more reactive than lead (and/	or copper) (1)	Da Cambridge
		lead	is more reactive than copper (1)		13
	(iv)		polarity of a Mn/Zn (cell) ne voltages of Zn/Pb and Mn/Pb (cells) (1)		[1]
					[Total: 12]
8	(a) (i)	CH ₃ ·	-CH=CH-CH ₃ (1)		[1]
	(ii)	one	correct amide linkage between two rectangles (1)		
		corre	ect sequencing of a second amide link and monome	ers (1)	
			correct amide links and rest of structure correct omers if seen) and correct continuation bonds (1)	(including additional	[3]
		-	-c	3 marks	
	(iii)	prote	ein or polypeptide or named protein (1)		[1]
	(iv)	addi	tion: only the polymer or one product is formed (1)		
		cond	densation: the polymer and a small molecule/water	/HCl is formed (1)	[2]
	(b) (i)	does	s not break down or rot or decompose (1)		
		by m	nicrobes or fungi or bacteria or by living organisms	(1)	[2]
	(ii)	•	three from: al pollution (1)		[3]
		(sho	rtage of) landfill sites (1)		
		danç	ger to wildlife/animals (including at sea) (1)		
		toxic	gases when burnt or greenhouse gases produced	when burned (1)	
	(c) Any		from: to corrosion/unreactive to water/more durable (1)		[2]
	ligh	nter/le	ess dense (1)		
	eas	easier to manufacture/can be moulded (1)			
	good insulator/keeps the water cold (1)				
					[Total: 14]