## **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

**Cambridge International General Certificate of Secondary Education** 

## MARK SCHEME for the October/November 2014 series

## 0439 CHEMISTRY (US)

**0439/21** Paper 2 (Core Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

[Total: 9]

viewww.xtrapapers.com Page 2 **Mark Scheme** Cambridge IGCSE - October/November 2014 (a) (i) E (ii) A and D (iii) D (iv) B [1] (v) D [1] (vi) A and D [1] **(b)**  $C_2H_4Br_2$ [1] (c) 4 (H<sub>2</sub>O) [1] 5 (O<sub>2</sub>) [1] **note**: mark dependent on 4 (H<sub>2</sub>O) [Total: 9] (a) (i) sodium / Na<sup>+</sup> 2 [1] (ii) X is fluoride [1] Y is nitrate [1] (iii) 0.244 (mg) [1] allow: 0.24 (iv) 4th box down ticked (weakly acidic) [1] (b) (add nitric acid) add silver nitrate [1] white precipitate [1] note: mark dependent on correct reagent (c) polymer [1] monomer [1]

ers.com

|   |       |                                                                                                               | www.xtrapape                     |
|---|-------|---------------------------------------------------------------------------------------------------------------|----------------------------------|
| Р | age : | Mark Scheme                                                                                                   | Sylvan                           |
|   |       | Cambridge IGCSE – October/November 2014                                                                       | 043                              |
| 3 | (a)   | ring around the OH group                                                                                      | Sylvan, Dad oer 043. Odd Cannbhi |
|   | (b)   | bromine (water)  allow: bromination                                                                           |                                  |
|   |       | decolourised / turns colourless note: mark dependent on correct reagent ignore: goes clear / gets discoloured | [1]                              |
|   |       | <b>allow</b> : potassium manganate(VII) / potassium permanganate (1) turns colourless (1)                     |                                  |
|   |       | ignore: incorrect colour of reagent                                                                           |                                  |

(c) (i) to break up the cells / to extract the pigment / to separate the pigment from

idea that solvent dissolves the pigment / idea of making a solution

(iii) to keep atmosphere in jar saturated (with solvent vapour)

ignore: find out how pure the rose petals are / reference to separating

colour won't come out

the petals / idea of getting the colour out of the petals, e.g. otherwise the

colours (ii) pigment might be absorbed onto filter paper / pigment sticks to filter paper [1] (d) (i) chromatography [1] (ii) spot near the bottom and above the solvent level [1]

allow: to reduce / prevent (solvent) evaporation

(iv) A and C [1]

(e) structure of ethanol with ALL atoms and bonds shown [2]

[Total: 12]

[1]

[1]

[1]

www.xtrapapers.com

[1]

[Total: 11]

| Page 4 | 4 Mark Scheme                                                                                                                                                                                                                                                                                                               | Syl. | per          |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|
|        | Cambridge IGCSE – October/November 2014                                                                                                                                                                                                                                                                                     | 043  |              |
| (a)    | thermometer                                                                                                                                                                                                                                                                                                                 |      | oer Cannonio |
| (b)    | Any two from:                                                                                                                                                                                                                                                                                                               |      | 18           |
|        | <ul> <li>same volume of water in can</li> <li>same height of burner (from can)</li> <li>wick same height</li> <li>same rate / amount of stirring of water</li> <li>allow: same temperature of water at start</li> <li>allow: same amount of fuels burnt / same temperature rise</li> <li>allow: same type of can</li> </ul> |      |              |
| (c)    | so same temperature throughout the water / to stop differences in the different parts of the water / otherwise the temperature will be bottom (of the water) / so not hotter in one place ignore: to mix the water / so there are no convection currents                                                                    | •    | [1]          |
| (d)    | decreases / goes down                                                                                                                                                                                                                                                                                                       |      | [1]          |
|        | idea of liquid or fuel turning to vapour / gas; allow: gases formed ignore: fuels evaporate note: 2nd mark dependent on first                                                                                                                                                                                               |      | [1]          |
| (e)    | ) F                                                                                                                                                                                                                                                                                                                         |      | [1]          |
| (f)    | (i) <u>mixture</u> of metals / <u>mixture</u> of metal(s) + non-metals do not allow: compound                                                                                                                                                                                                                               |      | [1]          |
|        | (ii) covers surface / idea of protective layer                                                                                                                                                                                                                                                                              |      | [1]          |
|        | prevents contact with air / prevents contact with water / so air no react with steel                                                                                                                                                                                                                                        | ,    | [1]          |

do not allow: reference to tin being more reactive / sacrificial protection (for

second marking point)

(g) 1st box down ticked (giant covalent)

www.xtrapapers.com

[1]

|         |                                         | 32      |
|---------|-----------------------------------------|---------|
| Page 5  | Mark Scheme                             | Syl     |
|         | Cambridge IGCSE – October/November 2014 | 043     |
| 5 (a) A | any <b>four</b> from:                   | Cambrie |

- suitable named metal / metal oxide e.g. reactive metal such as Mg / Zn or
- their oxides
- suitable named acid
- metal + acid gives metal salt / named metal gives named metal salt
- metal + acid gives off hydrogen

**note**: complete word equation for metal + acid  $\rightarrow$  salt + hydrogen (2)

- metal oxide + acid gives metal salt / named metal oxide gives named metal
- salt
- water also product of reaction of metal oxide + acid

**note**: complete word equation for metal oxide + acid → salt + water (2)

|   | (b) | exc                 | exothermic                                                                                                                                                                           |            |  |
|---|-----|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
|   | (c) | thic                | rable use of radioactive isotope e.g. detecting leaks in pipes / checking kness of paper / tracer / cancer treatment / investigating thyroid function ore: atomic bombs / explosions | [1]        |  |
|   | (d) | pro                 | tons 92 and 92                                                                                                                                                                       | [1]        |  |
|   |     | neu                 | utrons 143 and 146                                                                                                                                                                   | [1]        |  |
|   |     | electrons 92 and 92 |                                                                                                                                                                                      |            |  |
|   |     |                     |                                                                                                                                                                                      | [Total: 9] |  |
| 6 | (a) | (i)                 | (concentration) decreases                                                                                                                                                            | [1]        |  |
|   |     |                     | then remains constant  allow: levels out                                                                                                                                             | [1]        |  |
|   |     | (ii)                | 3.8 (hr) / 3 hr 48 min                                                                                                                                                               | [1]        |  |
|   |     | (iii)               | 9 (hr) <b>allow</b> : 8.8–9.2 (hr)                                                                                                                                                   | [1]        |  |
|   |     | (iv)                | steeper graph line from same starting point                                                                                                                                          | [1]        |  |
|   |     |                     | levels off lower than 0.10 mol /dm <sup>3</sup>                                                                                                                                      | [1]        |  |

(v) increase the temperature / increase concentration of sodium hydroxide

allow: add a catalyst

www.xtrapapers.cor

| Page ( | Mark Scheme Sy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | per                 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| . ago  | Cambridge IGCSE – October/November 2014 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43 %                |
| (b)    | Any <b>four</b> from:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cany                |
|        | <ul> <li>acid in burette</li> <li>use (volumetric) pipette to put sodium hydroxide into flask</li> <li>allow: sodium hydroxide in burette / acid in flask</li> <li>idea of correct setup of apparatus, i.e.flask under burette</li> <li>indicator in flask</li> <li>run hydrochloric acid into sodium hydroxide</li> <li>until indicator changes colour</li> <li>any indication of good technique e.g. repeating experiment / add acid</li> <li>slowly / shaking flask after each addition of acid</li> <li>note: answers must be in the correct context, e.g. do not allow indicator in burette</li> </ul> | 43 Adda Cambridge   |
| (c)    | bonding pair of electrons between H and C <i>l</i> and no additional electrons on atom six non-bonding electrons around the chlorine atom <b>ignore</b> : inner shell electrons in C <i>l</i> .                                                                                                                                                                                                                                                                                                                                                                                                             | the H<br>[1]<br>[1] |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [Total: 13]         |
| 7 (a)  | for better crop / for better plant growth / to replace elements (or named elements) lost from soil when crops harvested / for more plant protein allow: to give more nutrients to plants ignore: for healthy plant growth / to give plants the compounds they need to / to help plants grow                                                                                                                                                                                                                                                                                                                 | [1]                 |
| (b)    | neutralisation acid-base (reaction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [1]                 |
| (c)    | ammonium nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [1]                 |
| (d)    | 2 $NH_4^+$ to 1 $SO_4^{2-}$ / 2 ammonium to 1 sulfate allow: 2:1 or 1:2 ratio unqualified allow: $(NH_4)_2SO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [1]                 |
| (e)    | <ul> <li>Any two from:</li> <li>slaked lime can form an alkaline solution with water / slaked lime is calc</li> <li>hydroxide / slaked lime is a hydroxide / slaked lime is basic</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                | [2]<br>cium         |
|        | slaked lime reacts with ammonium (salts)  allow:: slaked lime reacts with fertiliser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |

ammonia escapes from soil / gas escapes from soil

| 1.                | h. 4    | paper |                 |
|-------------------|---------|-------|-----------------|
| AVAA/AA           | vtra    | nanar | e con           |
| 7 <b>7 7</b> 7 77 | ma LI a | vavei | 3. <b>CU</b> II |
| Let.              |         |       |                 |

[Total: 8]

| Page  | 7     | Mark Scheme Sy.                                                                                                                   | per          |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------|--------------|
| · uge |       | Mark Scheme Syl.  Cambridge IGCSE – October/November 2014 043                                                                     | OB T         |
| (f)   | pos   | sitive: anode and negative cathode                                                                                                | Da Cambridge |
|       | at -  | + electrode → chlorine                                                                                                            | Tage         |
|       | at -  | - electrode → potassium                                                                                                           | [1]          |
|       |       |                                                                                                                                   | [Total: 9]   |
| 8 (a) | An    | y four from:                                                                                                                      | [4]          |
|       | •     | dissolving                                                                                                                        |              |
|       | •     | diffusion in iodine solid the particles are close together                                                                        |              |
|       | •     | in iodine solid the particles are close together in iodine solid the particles <u>only</u> vibrate ALLOW: particles do not move   |              |
|       | •     | in solution the iodine molecules are further / far apart                                                                          |              |
|       | •     | in solution the particles are randomly arranged/ no particular arrangement                                                        |              |
|       | •     | in solution, particles move (fairly) freely / in solution particles slide over solvent molecules                                  |              |
|       | allo  | <b>bw</b> : in solution particles move slowly (from place to place)                                                               |              |
|       | •     | in solution there is bulk movement of particles from higher to lower                                                              |              |
|       | allo  | concentration / particles spread out in solution / move everywhere / mix up  w: particles move from higher to lower concentration |              |
|       | •     | ideas of explanation of dissolving in terms of solvent molecules getting                                                          |              |
|       |       | between the iodine particles ideas about forces between particles of iodine being weakened on dissolving                          |              |
|       | •     | ideas about forces between particles of fourte being weakened off dissolving                                                      |              |
| (b)   | (i)   | solid                                                                                                                             | [1]          |
|       | (ii)  | heat causes astatine to melt / energy causes astatine to melt allow:: the astatine has melted / radioactivity melts the astatine  | [1]          |
|       | (iii) | At <sub>2</sub> on right                                                                                                          | [1]          |
|       |       | 2 (NaAt) on left <b>note</b> : 2nd mark dependent on At <sub>2</sub> or 2At on right                                              | [1]          |