CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International General Certificate of Secondary Education

Www.PapaCambridge.com MARK SCHEME for the October/November 2014 series

0439 CHEMISTRY (US)

0439/31

Paper 3 (Extended Theory), maximum raw mark 80

wxtrapapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

age 2	Mark Scheme Sy	oer		
	Cambridge IGCSE – October/November 2014	043 7030		
(a)	Match the following pH values to the solutions given below.	143 Papacamphi		
	1 3 7 10 13			
	The solutions all have the same concentration.			
	solution pH			
	dilute hydrochloric acid, a strong acid 1			
	aqueous sodium hydroxide, a strong base13aqueous sodium chloride, a salt7			
	dilute ethanoic acid, a weak acid 3	[5]		
		[0]		
(b)	Hydrochloric acid strong acid or ethanoic acid weak acid	[1]		
	OR: hydrochloric acid completely ionised or ethanoic acid			
	partially ionised hydrochloric acid greater concentration of/more H ⁺ ions (than ethanoic acid	l) [1]		
(c)	Rate of reaction with Ca, Mg, Zn, Fe	[1]		
	Strong (hydrochloric) acid bubbles faster or more bubbles or dissolves fast	ter [1]		
	DR: rate of reaction with (metal) carbonate			
	strong (hydrochloric) acid faster or more bubbles or dissolves faster (only i carbonate insoluble)	f [1		
		[1]		
	OR: electrical conductivity strong (hydrochloric) acid better conductor			
		[Total: 9		
		[
(a)	soft because weak forces between layers/sheets/rows	[1]		
	layers can slip/slide	[1]		
	good conductor because electrons can move/mobile			
(b)	it is soft: pencils or lubricant or polish good conductor: electrodes or brushes (in electric motors)	[1] [1]		
(c)		-		
	bonded/attached to two silicon atoms	[1]		
	(ii) Any two from:			
	high melting point/boiling point			
	hard colourless crystals/shiny			
	poor/non-conductor of electricity/insulator			
	insoluble in water	[2]		
		[Total: 8		

Cambridge IGCSE - October/November 2014 043 (a) Any two from: bleach/making wood pulp/making paper food/fmult juice/wine preservative food/fmult juice/wine preservative (ii) heating/roasting/burning (zinc sulfides) in air/oxygen COND on M1 (c) (i) V ₂ O ₅ (ii) position of equilibrium shifts right/yield increases in air/oxygen cond/higher collision frequency fewer moles/molecules (of gas) on right (so) position of equilibrium shifts right/yield increases in air/oxygen (or acid) (d) (the reaction is) too violent/too exothermic or produces mist/fumes (of acid) [Total: 1 (a) (i) insufficient/limited oxygen in air/oxygen 2CO coke/carbon reacts with carbon dioxide [Total: 1 (a) (ii) insufficient/limited oxygen or c + CO ₂ → 2CO coke/carbon reacts with carbon dioxide [Total: 1 (iii) (acbon dioxide [I] [I] [I] [I]	Page	3	Mark Scheme Syn	per
 (a) (i) bathground group can be sufficiently in air/oxygen COND on M1 (c) (i) V₂O₅ (ii) position of equilibrium shifts right/yield increases to save energy (iii) faster reaction/rate more collisions per second/higher collision frequency fewer moles/molecules (of gas) on right (so) position of equilibrium shifts right/yield increases (d) (the reaction is) too violent/too exothermic or produces mist/fumes (of acid) (a) (i) insufficient/limited oxygen or 2C + O₂ → 2CO coke/carbon reacts with carbon dioxide or C + CO₂ → 2CO (ii) Fe₂O₃ + 3CO → 2Fe + 3CO₂ species (1) balancing (1) (b) (i) carbon dioxide (ii) CaO + SiO₂ → CaSiO₃ [1] each side correct (iii) (molten) iron higher density (than slag) (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) 	9 -		Cambridge IGCSE – October/November 2014 043	apa .
 (a) (i) bathground group can be sufficiently in air/oxygen COND on M1 (c) (i) V₂O₅ (ii) position of equilibrium shifts right/yield increases to save energy (iii) faster reaction/rate more collisions per second/higher collision frequency fewer moles/molecules (of gas) on right (so) position of equilibrium shifts right/yield increases (d) (the reaction is) too violent/too exothermic or produces mist/fumes (of acid) (a) (i) insufficient/limited oxygen or 2C + O₂ → 2CO coke/carbon reacts with carbon dioxide or C + CO₂ → 2CO (ii) Fe₂O₃ + 3CO → 2Fe + 3CO₂ species (1) balancing (1) (b) (i) carbon dioxide (ii) CaO + SiO₂ → CaSiO₃ [1] each side correct (iii) (molten) iron higher density (than slag) (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) 	(a)	blea food	two from: ach/making wood pulp/making paper d/fruit juice/wine preservative igant/sterilising/insecticide	Sambrid
 (ii) position of equilibrium shifts right/yield increases to save energy (iii) faster reaction/rate more collisions per second/higher collision frequency fewer moles/molecules (of gas) on right (so) position of equilibrium shifts right/yield increases (d) (the reaction is) too violent/too exothermic or produces mist/fumes (of acid) (a) (i) insufficient/limited oxygen or 2C + O₂ → 2CO coke/carbon reacts with carbon dioxide or C + CO₂ → 2CO (ii) Fe₂O₃ + 3CO → 2Fe + 3CO₂ species (1) balancing (1) (b) (i) carbon dioxide (ii) CaO + SiO₂ → CaSiO₃ [1] each side correct (iii) (molten) iron higher density (than slag) (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) 	(b)			[1 [1
 to save energy (iii) faster reaction/rate more collisions per second/higher collision frequency fewer moles/molecules (of gas) on right (so) position of equilibrium shifts right/yield increases (d) (the reaction is) too violent/too exothermic or produces mist/fumes (of acid) (a) (i) insufficient/limited oxygen or 2C + O₂ → 2CO coke/carbon reacts with carbon dioxide or C + CO₂ → 2CO (ii) Fe₂O₃ + 3CO → 2Fe + 3CO₂ species (1) balancing (1) (b) (i) carbon dioxide (ii) CaO + SiO₂ → CaSiO₃ [1] each side correct (iii) (molten) iron higher density (than slag) (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) 	(c)	(i)	V ₂ O ₅	[1
 more collisions per second/higher collision frequency fewer moles/molecules (of gas) on right (so) position of equilibrium shifts right/yield increases (d) (the reaction is) too violent/too exothermic or produces mist/fumes (of acid) [Total: 1 (a) (i) insufficient/limited oxygen or 2C + O₂ → 2CO coke/carbon reacts with carbon dioxide or C + CO₂ → 2CO (ii) Fe₂O₃ + 3CO → 2Fe + 3CO₂ species (1) balancing (1) (b) (i) carbon dioxide (ii) CaO + SiO₂ → CaSiO₃ [1] each side correct (iii) (molten) iron higher density (than slag) (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) 		(ii)		[1 [1
 fewer moles/molecules (of gas) on right (so) position of equilibrium shifts right/yield increases (d) (the reaction is) too violent/too exothermic or produces mist/fumes (of acid) [Total: 1 (a) (i) insufficient/limited oxygen or 2C + O₂ → 2CO coke/carbon reacts with carbon dioxide or C + CO₂ → 2CO (ii) Fe₂O₃ + 3CO → 2Fe + 3CO₂ species (1) balancing (1) (b) (i) carbon dioxide (ii) CaO + SiO₂ → CaSiO₃ [1] each side correct (iii) (molten) iron higher density (than slag) (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) 		(iii)	faster reaction/rate	[1
 (so) position of equilibrium shifts right/yield increases (d) (the reaction is) too violent/too exothermic or produces mist/fumes (of acid) [Total: 1 (a) (i) insufficient/limited oxygen or 2C + O₂ → 2CO coke/carbon reacts with carbon dioxide or C + CO₂ → 2CO (ii) Fe₂O₃ + 3CO → 2Fe + 3CO₂ species (1) balancing (1) (b) (i) carbon dioxide (ii) CaO + SiO₂ → CaSiO₃ [1] each side correct (iii) (molten) iron higher density (than slag) (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) 			more collisions per second/higher collision frequency	[1
 (d) (the reaction is) too violent/too exothermic or produces mist/fumes (of acid) [Total: 1 (a) (i) insufficient/limited oxygen or 2C + O₂ → 2CO coke/carbon reacts with carbon dioxide or C + CO₂ → 2CO (ii) Fa₂O₃ + 3CO → 2Fe + 3CO₂ species (1) balancing (1) (b) (i) carbon dioxide (ii) CaO + SiO₂ → CaSiO₃ [1] each side correct (iii) (molten) iron higher density (than slag) (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) 			fewer moles/molecules (of gas) on right	[1
 (a) (i) insufficient/limited oxygen or 2C + O₂ → 2CO coke/carbon reacts with carbon dioxide or C + CO₂ → 2CO (ii) Fe₂O₃ + 3CO → 2Fe + 3CO₂ species (1) balancing (1) (b) (i) carbon dioxide (ii) CaO + SiO₂ → CaSiO₃ [1] each side correct (iii) (molten) iron higher density (than slag) (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) 			(so) position of equilibrium shifts right/yield increases	[1
 (a) (i) insufficient/limited oxygen or 2C + O₂ → 2CO coke/carbon reacts with carbon dioxide or C + CO₂ → 2CO (ii) Fe₂O₃ + 3CO → 2Fe + 3CO₂ species (1) balancing (1) (b) (i) carbon dioxide (ii) CaO + SiO₂ → CaSiO₃ [1] each side correct (iii) (molten) iron higher density (than slag) (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) 	(d)	(the	reaction is) too violent/too exothermic or produces mist/fumes (of acid)	[1
 or 2C + O₂ → 2CO coke/carbon reacts with carbon dioxide or C + CO₂ → 2CO (ii) Fe₂O₃ + 3CO → 2Fe + 3CO₂ species (1) balancing (1) (b) (i) carbon dioxide (ii) CaO + SiO₂ → CaSiO₃ [1] each side correct (iii) (molten) iron higher density (than slag) (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) 				[Total: 12
 or C + CO₂ → 2CO (ii) Fe₂O₃ + 3CO → 2Fe + 3CO₂ species (1) balancing (1) (b) (i) carbon dioxide (ii) CaO + SiO₂ → CaSiO₃ [1] each side correct (iii) (molten) iron higher density (than slag) (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) 	(a)	(i)		[1
 species (1) balancing (1) (b) (i) carbon dioxide (ii) CaO + SiO₂ → CaSiO₃ [1] each side correct (iii) (molten) iron higher density (than slag) (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) 				[1
 (ii) CaO + SiO₂ → CaSiO₃ [1] each side correct (iii) (molten) iron higher density (than slag) (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) 		(ii)		[2
 [1] each side correct (iii) (molten) iron higher density (than slag) (iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron) 	(b)	(i)	carbon dioxide	[1
(iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron)		(ii)		[2
oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron)		(iii)	(molten) iron higher density (than slag)	[2
(c) (i) air/oxygen and water (need both)		(iv)	oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with	[1
	(c)	(i)	air/oxygen and water (need both)	[1

age 4	Mark Scheme Sy.	per
aye 4	Cambridge IGCSE – October/November 2014 043	Da Ver
(ii)	aluminium oxide layer is impervious or non-porous or passive or unreactive or will not allow water/air to pass through it (rust allows passage of water or air or it flakes off)	per apacambric
(d) (i)	zinc more reactive (than iron/steel) loses electrons electrons move (from zinc) to iron Zinc reacts (with air and water) or zinc corrodes or zinc is oxidised or zinc is anodic or zinc forms positive ions or zinc forms Zn ²⁺ or iron and steel don't react with air/water or iron and steel are not oxidised or iron and steel do not form ions or iron and steel do not lose electrons or iron and steel are	[1 [1 [1
	cathodic	[1
(ii)	R to L in wire	[1
(iii)	$2H^{+} + 2e^{-} \rightarrow H_{2}$ species (1) balancing (1)	
		[Total: 19
	rogen and oxygen react	[1
at	high temperatures (in engine)	[1
(b) M	1 carbon monoxide (converted to) carbon dioxide or 2CO + $O_2 \rightarrow 2CO_2$	[1
	2 (by) oxides of nitrogen (which are reduced to) nitrogen 2NO $\rightarrow N_2$ + O_2 or $2NO_2 \rightarrow N_2$ + $2O_2$	[1
М	3 hydrocarbons (burn) making water	[1
	4 products: any two from: rbon dioxide, water, nitrogen	[1
	ad compounds are toxic or brain damage or reduce IQ or nausea or kidney Iure or anaemia	[1
		[Total: 7
(a) (i)	butanoic acid	[1
	methanol	[1
(ii)	number of moles of ethanoic acid = 0.1 number of moles of ethanol = 0.12(0)	[1 [1
	the limiting reagent is ethanoic acid number of moles of ethyl ethanoate formed = 0.1	[1 [1
	maximum yield of ethyl ethanoate is 8.8g	[1

	*	ww.xtrapape
Page 5	Mark Scheme Sy	A per
	Cambridge IGCSE – October/November 2014 04	43 %
tw	correct ester linkage [1] two ester linkages (COND on M1) continuation (COND on M2)	
(c) (i)	add bromine water/bromine turns colourless remains brown/orange/reddish brown/yellow	43 Papa Cambridge [1] [1] [1]
	ALLOW: potassium manganate(VII) (acidic or alkaline) correct colour colourless/green or brown ppt stays pink/purple	[1] [1] [1]
(ii)	ester 1 COND alkyl group is C_nH_{2n+1} which is NOT $C_{17}H_{33}$ or $C_{17}H_{35}$ is C_nH_{2n+1} or less hydrogen	[1] [1]
(iii)	soap or (sodium) salt (of a carboxylic acid) or carboxylate	[1]
	alcohol	[1]
		[Total: 17]
(a) (i)	$6Li + N_2 = 2Li_3N$ species (1) balancing (1)	
(ii)	N ³⁻ ion drawn correctly	[1]
	Charges correct (minimum $1 \times Li$ ion and 1 nitride ion)	[1]
(b) (i)	$3\times$ shared pairs between N and $3\times F$	[1]
	only 2 non-bonding electrons on N, 6 non-bonding electrons on each F (COND on first point)	[1]
(ii)	Strong attractive forces/strong ionic bonds in lithium nitride	[1]
	weak (attractive) forces between molecules in NF_3	[1]
		[Total: 8]