WANN. PAPAC CAMBridge. COM **International General Certificate of Secondary Education CAMBRIDGE INTERNATIONAL EXAMINATIONS** 0620/2 **CHEMISTRY**

PAPER 2

OCTOBER/NOVEMBER SESSION 2002

1 hour

Candidates answer on the question paper. No additional materials are required.

Time 1 hour

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer all questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

You may use a calculator.

A copy of the Periodic Table is printed on page 16.

FOR EXAMINER'S USE		
1		
2		
3		
4		
5		
6		
TOTAL		

[1]

1 Ammonia, NH₃, is synthesised by the following route.

methane ———— hydroger	າ
	iron catalyst
	→ ammonia
air ——— nitrogen	

(a) (i) To which group of organic compounds does methane, CH₄, belong? Put a ring around the correct answer.

> alcohol carboxylic acid alkane alkene [1]

(ii) Draw the formula for methane, showing all atoms and bonds.

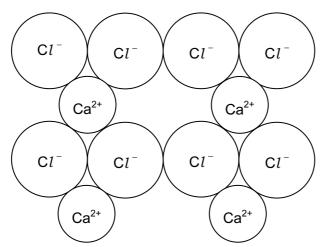
(iii) State the most likely source of methane. ______[1] (b) (i) State the percentage of nitrogen in clean air. ______[1] (ii) Name another non-metal that is in the same Period as nitrogen. [1] (c) Ammonia is made by heating hydrogen with nitrogen in the presence of a catalyst. (i) What is the purpose of the catalyst? _____[1] What happens to the rate of a reaction when the temperature is increased? (ii)

	**************************************	w.xtrapapers.com
	3	For Examiner's
(d)	(i) Complete the following equation which shows the synthesis of ammonia from hydrogen and nitrogen.	Wxtrapapers.com For Examiner's e [1]
	$3H_2 + N_2 \rightleftharpoons NH_3$	[1] Tage
	(ii) What does the sign — mean?	[1]
(e)	The ammonia formed in the reaction is liquefied.	1
	Complete the diagram below to show the arrangement of the molecules in liquid ammonia.	
	represents a single molecule of ammonia.	
		[2]
(f)	How would you test for ammonia in the laboratory?	
	test	
	result	[2]
(g)	Ammonia is used to make fertilizers.	
	(i) Why are fertilizers used in agriculture?	
		[1]
	(ii) Some fertilizers contain ammonium sulphate.	
	Complete the word equation to show how ammonium sulphate is formed.	

ammonia +

 $\longrightarrow \text{ammonium sulphate}$

2 When rain water trickles through rocks, it dissolves some of the minerals present.


This water, which is bottled for drinking, is called mineral water.

The table shows the ions present in a litre of mineral water.

name of ion	formula of ion	mass of ion present in one litre of water/milligrams	
calcium	Ca ²⁺	10	
chloride	Cl-	8	
hydrogencarbonate	HCO ₃	64	
sodium	Na⁺	8	
sulphate	SO ₄ ²⁻	7	

(a)	What do you understand by the term ion?
	[1]
(b)	Which positive ion has the greatest concentration in this sample of water?
	[1]
(c)	Complete the following equation to show how a calcium ion is formed from a calcium atom.
	Ca \longrightarrow Ca ²⁺ + e ⁻
	[1]
(d)	When this sample of mineral water is evaporated to dryness, various compounds are formed. One of these compounds is calcium chloride.
	Suggest the name of two other compounds which could be formed.
	compound 1
	compound 2 [2]

(e) Part of the structure of calcium chloride is shown below.

Use this diagram to work out the simplest formula for calcium chloride.

formula	[1]

(f) Complete the following table to show the electrical conductivity of calcium and calcium chloride in the solid and liquid states.

Put a ✓ if the substance conducts.

Put a **x** if the substance does not conduct.

substance	state	electrical conductivity
calcium	solid	
calcium	liquid	
calcium chloride	solid	
calcium chloride	liquid	

[2]

(g) A sample of water was contaminated with clay, which is insoluble in water.

Explain with the help of a labelled diagram, how you would separate the clay from the water.

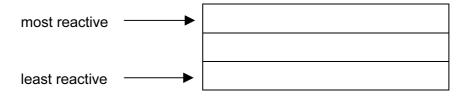
- 3 Fluorine, chlorine, bromine and iodine are halogens.
 - (a) Complete the table by filling in the blank spaces.

halogen	colour	melting point /°C	boiling point /°C	state at room temperature
fluorine	yellow	-220	-188	
chlorine		-101	-35	gas
bromine	reddish- brown	-7	+59	
iodine		+114		solid

[4]

(b) Predict the boiling point of iodine.

[1]


(c) When chlorine is bubbled through a solution of potassium bromide, the solution turns orange - red.

When iodine is mixed with potassium bromide, no colour change occurs.

(i) Write a word equation for the reaction between chlorine and potassium bromide.

[2]

(ii) Put the elements bromine, chlorine and iodine in order of reactivity.

[1]

(d) State a use of chlorine.

[1

For Examiner's Vse

(e) In the presence of sunlight, chlorine reacts with methane.

Hydrogen chloride gas, H — Cl, is given off during this reaction.

State the type of bonding in a hydrogen chloride molecule.

Put a ring around the correct answer.

covalent ionic metallic weak

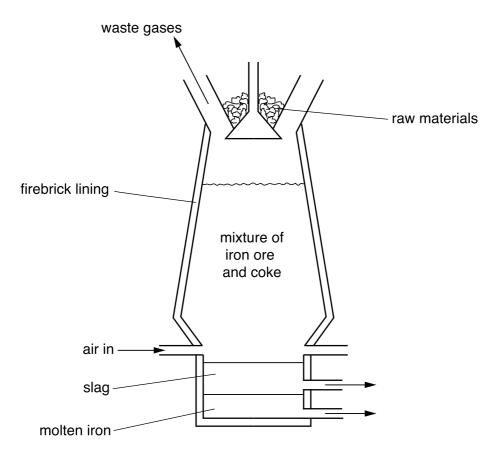
[1]

 CH_3CO_2H

 $\mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CO}_2\mathsf{H}$

В

C

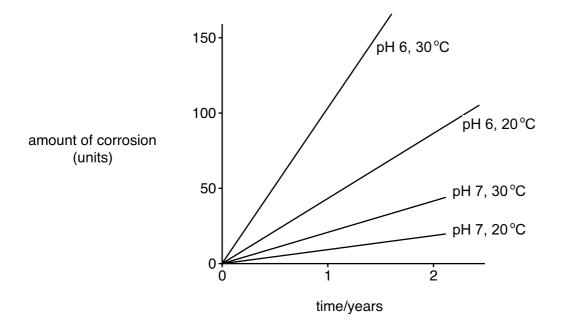

 CH_3CH_2CHO

	D	E	
(a)	What do you understand by the	he term <i>organic compound</i> ?	
			[1]
(b)	Which two of the compounds	s belong to the same homologo	ous series?
	compound	and compound	[1]
(c)	Which one of these compoun	nds is an unsaturated hydrocar	bon?
			[1]
(d)	Which one of these compoun	nds is an alcohol?	
			[1]
(e)	Which one of these compound from petroleum?	nds can be formed directly by o	cracking the paraffin fraction
			[1]
(f)	Compound D burns readily.		
	(i) Burning is an exothermi	ic reaction.	
	Explain the meaning of	the term exothermic.	
			[1]
	(ii) State the products form	ned when D burns in excess air	
			[2]

	www.xtrapapers.com
	9 For Examiner's
	(iii) Name the carbon compound formed when D undergoes incompound combustion.
	combustion. [1]
(g)	Write down the molecular formula of compound C .
	[1]
(h)	Calculate the relative molecular mass of compound C .
	[1]
(i)	Many fruits contain a variety of different coloured compounds.
	What separation technique can you use to separate these different coloured compounds?
	[1]

5 Iron is extracted from the ore, haematite.

The iron ore is put in a blast furnace with coke and a current of air is blown through the heated mixture.

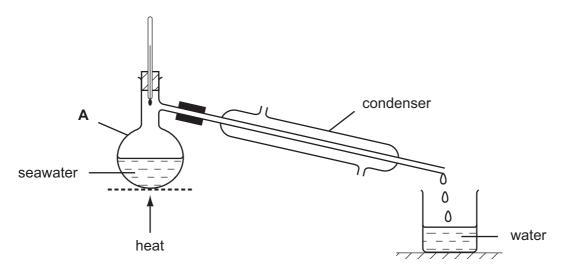

	cement	limewater	limestone	slag	
	Put a ring around th	ne correct answer.			
(b)	What other raw material needs to be added to the blast furnace?				
					[1]
(a)	What do you unders	stand by the term <i>ore</i> ?			

[1]

			11			Examiner's
(c)	Near	the bottom of the furnace, ire	on(III) oxide is reduc	ed by	carbon.	Examiner's se
		Fe ₂ O ₃ + 3C	→ 2Fe	+	3CO	Billio
	(i)	Write a word equation for th	is reaction.			36.C
						N AM
						[1]
	(ii)	Explain what is meant by the	e term <i>reduction</i> .			
						[1]
(d)	The t	able shows the composition	of the waste gases le	eaving	the blast fur	nace.
		gas	percentage of gas in the mixture			
		carbon dioxide	12			
		carbon monoxide	24			
		hydrogen	4			
		nitrogen	60			
	(i)	The hydrogen in the waste grapour.	gas is formed by the	reacti	ion of hot car	bon with water
		There is no water in the mat	erials added to the to	op of t	the furnace.	
		Suggest where this water va	apour comes from.			
						[1]
	(ii)	The reaction of hot carbon v	vith water vapour is e	endoth	nermic.	
		What is meant by the term e	endothermic?			
		***************************************				[1]
(e)	Iron (can be converted into steel, v	vhich is more resista	nt to c	orrosion.	
	(i)	Describe briefly how iron is	converted into steel.			
		•				
					,	
						[2]
	(ii)	State one use of mild steel.				

(f) In some conditions, steel corrodes more quickly than in others.

The graphs show the rate of corrosion of a particular type of steel under different controlled conditions.


(i)	How does pH affect the rate of corrosion?	
		[1]
(ii)	How does temperature affect the rate of corrosion?	
		[1]
	Explain this in terms of moving particles.	
		[2]

The presence of acidic gases in the air may increase the rate of corrosion. (iii) State the name and source of one acidic gas found in the air as a result of pollution.

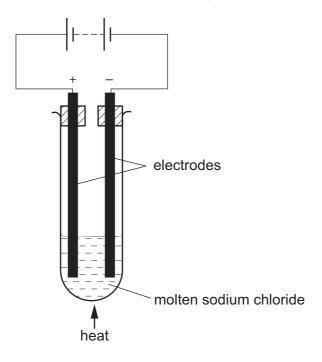
name	
source	 [2]

For Examiner's Vise

A student took a sample of seawater and heated it using the apparatus shown below.

(a)	What	is the name given to the process shown in the diagram?	
			[1]
(b)	State	the name of the piece of apparatus labelled A .	
			[1]
(c)	Expla	in the function of the condenser.	
			•••
			[2]
(d)	Pure	water collects in the beaker.	
	(i)	State the pH of pure water.	
			[1]
	(ii)	State the boiling point of pure water.	
			[1]
			וי ו

[1]


(e) The table shows the mass of various compounds obtained when 1 litre of seaw evaporated.

compound	formula	mass of solid present / g
sodium chloride	NaC1	28.0
	MgCl ₂	8.0
magnesium sulphate	MgSO ₄	6.0
calcium sulphate	CaSO ₄	2.0
potassium chloride	KC1	
calcium carbonate	CaCO ₃	1.0
potassium bromide	KBr	
		total mass = 45.0

(i) How many grams of magnesium sulphate are present in 180 g of solid left by evaporation of seawater?

(ii)	Which compound in the table reacts with acids to release carbon dioxide?	
		[1]
(iii)	State the name of the compound which has the formula MgC l ₂ .	
		[1]
(iv)	Calcium sulphate contains sulphate ions.	
(14)	Calcium sulphate contains sulphate lons.	
	Describe a test for sulphate ions.	
	test	
	result	
		[0]

(f) Pure sodium chloride can be electrolysed using the apparatus shown below.

(1)	Why does the sodium chloride have to be molten for electrolysis to occur?	
		[2]
(ii)	State the name of the product formed during electrolysis at	
	the anode (positive electrode)	
	the cathode (negative electrode)	[2]
(iii)	Suggest a suitable substance which could be used for the electrodes.	
		[1]

DATA SHEET The Periodic Table of the Elements

=											=	≥	>	>	=	C	
						Hydrogen 1					■	2	>	5	=	2 Helium 2	
9 Be Beryllium 4 24 Mg	_ w Ea				J						11 BB Boron 5 A 1	9	Nitrogen 7 31 31	- ω	19 Fluorine 9 35.5 C1		
Calcium 20 Calcium 20 St Strontium 38 Strontium 38 Barium 56 Bariu	Scandium 2 Scandium 2 89	48 51 Titanium Vanadium 23 Sr Nb Zirconium 41 T78 181 T41 Hefinium 73		Chromium 24 Chromium 25 96 Mo Molybdenum 43 184 W Tungsten 75	MMn unganese TC The threttum Re Re	Fe iron 26 101 Ru Ruthenium 44 Osmium 76 Osmium 76	59 Cobalt 27 103 Rh Rhodium 45 Iridium 77	59 Nickel 28 106 Pd	Copper 29 Copper 108 Ag Ag Niver 197 Au	2n 2nc 30 2nc Cadmium 48 Cadmium 48 Mercury 80 Mercury	Gallum 31 115 In 115 204 204 Theilium 81 1 T	119 Cermanium 32 Sn Tin 50 Tin 82 Lead 82 Lead	Assemble 15 Assemble 33 Arsemble 34 Arstendony 51 22 Sb Antimony 51 Bismuth 83	128 Selenium 34 Te Te Te Italiurium 52 Po Polonium 84 Polonium 84 Polonium 84 Polonium 84 Polonium 84 Polonium 84 Polonium 85 Polonium 85 Polonium 85 Polonium 85 Polonium 86	17 Chodree 80 Bronnine 35 127 127 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18 Argon 18 Krypton 36 Krypton 254 Xe Xenon 56 Radon 86 R	16
Ra Radium 88 nthanc ctinoid X	Franctium Radium 85 AC Actinium 89 *58-71 Lanthanoid series 90-103 Actinoid series Key X x = atelative atomic mass x = atomic symbol b = proton (atomic) number	88	e	Praseodymium Ne 59	Necdymium 60 238 U Uranium 62 62 62 62 62 62 62 62 62 62 62 62 62	Pm Promethium 61 Neptunum 93 Neptunum 93	Samarium 62 Pu Plutonium 94 Plutonium 95 Plu	152 Europium 63 Am Americium 95	140141144PmSm150152157159162165Cerium Serium Sp HoundrumPraseodymium Sp BoProseodymium Sp BoProseodymium Sp BoProseodymium Sp BoProseodymium Sp BoPromethium Sp BoPromethium Sp BoPromethium Sp BoPutonium Sp BoPutonium Sp BoAm Sp Sp Sp BoCm Sp 	Tb Tb Terbium 65 Bk 97 rature and	Dy Dysprosium 66 Californium 98 Dressurf	Holmium 67 Eseminum 99 (r.t.p.).	167 Ebium 68 Fm Fermium 100	Thuilum 69 Md Mendelevium 101	M Nobelium Nobelium 102 102 102 103 175 175 170 170 170 170 170 170 170 170 170 170	Lutetium 7.1 Lutetium 7.1 Law Lutetium 7	7. Day

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).