MARK SCHEME for the June 2004 question papers

0620/01
0620/02
0620/03
0620/05
0620/06

0620 CHEMISTRY

Paper 1 (Multiple Choice), maximum mark 40
Paper 2 (Core), maximum mark 80
Paper 3 (Extended), maximum mark 80
Paper 5 (Practical), maximum mark 40
Paper 6 (Alternative to Practical), maximum mark 60

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0620 (Chemistry) in the June 2004 examination.

	maximum	minimum mark required for grade:			
mark available	A	C	E	F	
Component 1	40	-	26	20	17
Component 2	80	-	52	36	27
Component 3	80	53	31	-	-
Component 5	40	31	24	18	14
Component 6	60	42	32	21	15

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E . The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.
Grade A* does not exist at the level of an individual component.

INTERNATIONAL GCSE

MARK SCHEME
MAXIMUM MARK: 40
SYLLABUS/COMPONENT: 0620/01
CHEMISTRY
(Multiple Choice)

Page 1				Syllabu
	Question Number	Key	Question Number	Key
	1	A	21	C
	2	D	22	C
	3	B	23	B
	4	B	24	D
	5	C	25	D

INTERNATIONAL GCSE

MARK SCHEME
MAXIMUM MARK: 80
SYLLABUS/COMPONENT: 0620/02
CHEMISTRY

Page 1	Mark Scheme	Syllabus
	Chemistry - June 2004	0620

1 (a) B, C, F (all needed);
Only contain one type of atom
NOT: contain one kind of molecule
NOT: cannot be split using chemical means
(b) C
(c) (i) B
(ii) any gas with diatomic molecules e.g. chlorine, hydrogen, hydrogen chloride [1]
(d) (i) F
(ii) pencil 'leads'/in pencils/lubricant/in electrical conductors/for electrodes/ in tennis racquets/in golf clubs/hockey sticks etc
(e) (i) substance containing 2 or more different atoms combined/bonded/joined (both parts needed for mark)
ALLOW: elements (chemically) combined
(ii) methane
(f) (i) 8 electrons round chlorine and bonded pair with dot and cross $=2$

ALLOW: all dots or all crosses
Correct number of electrons but bonded pair not clearly on overlap = 1 NOT: molecules other than hydrogen chloride
(ii) covalent
(iii) blue litmus;
(litmus) turns red
(iv) pH 2
(v) 2
(vi) magnesium chloride

NOT: formula

2 (a) insoluble particles/solids/dirt trapped/caught on stones;
NOT: filter reacts with insoluble impurities
NOT: impurities unqualified
Water passes through/filtered OWTTE
(b) (i) kill bacteria/germs, disinfect water OWTTE
(ii) neutralises acidity/water

ALLOW: reacts with acids in water
(iii) calcium hydroxide

NOT: formula
(iv) neutralising acid soils/neutralising acidic (industrial) waste/making bleaching powder/removing acidic gases/in Solvay process/in recovery of ammonia/making limewater/in water softening/for making plaster/for making mortar/controlling soil acidity NOT: neutralising acids unqualified NOT: making cement
(c) (i) 100 ;
${ }^{\circ} \mathrm{C}$ (conditional on 100)
(ii) anhydrous cobalt chloride/anhydrous copper sulphate (or correct colours);

NOT: cobalt chloride/copper sulphate unqualified Turns pink/blue (respectively)
(iii) any suitable e.g. washing/cleaning/drinking/cooking
(d) $\quad \mathrm{B}$
(e) ethanol

NOT: alcohol
(f) potassium hydroxide; hydrogen

NOT: symbols

$$
\text { Total = } 15
$$

3 (a) means of measuring gas volume e.g. gas syringe/measuring cylinder (must be graduated);
flask/test tube/vessel with calcium carbonate + acid leading to syringe etc IGNORE: lack of reference to closed system (unless drawing incorrect)
record volume on gas syringe/measuring cylinder/measure how much carbon dioxide given off
at various time intervals/at a particular time
OR
flask/vessel with calcium carbonate and hydrochloric acid in flask (1) measure its mass at beginning of experiment (1)
measure mass of flask and contents during reaction (1)
at specific time(s) (1)
(b) (i) faster/greater/speeds up
(ii) slower/less
(iii) faster/greater/speeds up
(c) (i) add aqueous sodium hydroxide;
white precipitate;
insoluble in excess
(incorrect reagent $=0$)
ALLOW: flame test - brick red
(d) (i) high in the reactivity series/very reactive
(ii) 2 electrons in outer shell;
inner shells correct as 2.8.8

4 (a) ethanol-solvent ethene - polymer bitumen - roads
(b) ethanol
(c) (i) C
(ii) A
(iii) B
(iv) D
(d) (i) (compound) containing only carbon and hydrogen NOT: it contains carbon and hydrogen
(ii) has only single bonds/ has general formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ NOT: it is saturated

$$
\text { Total }=10
$$

5 (a) chlorine, argon, potassium, bromine, iodine
ALLOW: symbols
(b) chlorine, potassium, argon, bromine, iodine

ALLOW: symbols
(c) $\quad 2^{\text {nd }}$ box down ticked
(d) chlorine, bromine, iodine (all 3 needed)
(e) (i) potassium/K
(ii) $\operatorname{argon} / \mathrm{Ar}$
(f) $\quad 1^{\text {st }}$ and $4^{\text {th }}$ boxes ticked (1 mark each)
(g) (i) high (boiling point)
(ii) conducts/is high
(h) potassium loses an/one electron/loses outer shell
chlorine gains an/one electron/outer shell becomes complete
ALLOW: (for 1 mark) potassium loses two electrons + chlorine gains two electrons
ALLOW: e.g. 2.8.8. \rightarrow 2.8.8 for first mark
Any indication of sharing electrons $=0$

Page 4

Mark Scheme
Syllabus
Chemistry - June 2004 0620

6 (a) carbon monoxide
(b) iron oxide loses oxygen/it loses oxygen/oxidation number of iron decreases [1] ALLOW: iron gains electrons
Answer must refer to the iron/iron oxide - therefore:
NOT: carbon monoxide gains oxygen
NOT: oxygen lost in the reaction
NOT: iron loses oxygen
(c) $3 ; 2$ (one mark each)
(d) (i) oxidise the impurities/oxidise Si or P or $\mathrm{C} /$ burn off the impurities

NOT: get rid of impurities
NOT: slag formation
(ii) exothermic
(iii) is/floats above the molten iron
(iv) calcium oxide
(v) stronger/harder/not brittle/less easily corroded ORA e.g. iron rusts NOT: less corrosive
(e) any 3 of:
high melting/boiling points;
have coloured compounds (NOT: they are coloured);
have high densities;
form complex ions;
elements/compounds are good catalysts;
form ions with different charges/variable oxidation states
(f) alloys

INTERNATIONAL GCSE

MARK SCHEME
MAXIMUM MARK: 80
SYLLABUS/COMPONENT: 0620/03
CHEMISTRY
Extended

Page 1	Mark Scheme	Syllabus
	Chemistry - June 2004	0620

- When the name of a chemical is demanded by the question, a correct formula is usually acceptable. When the formula is asked for, the name is not acceptable.
- When a word equation is required a correct symbol equation is usually acceptable. If an equation is requested then a word equation is not usually acceptable.
- An incorrectly written symbol, e.g. NA or CL, should be penalised once in a question.

In the mark scheme if a word or phrase is underlined it (or an equivalent) is required for the award of the mark.
(......) is used to denote material that is not specifically required.

OR designates alternative and independent ways of gaining the marks for the question.
or indicates different ways of gaining the same mark.
COND indicates that the award of this mark is conditional upon a previous mark being gained.

- Unusual responses which include correct Chemistry that answers the question should always be rewarded - even if they are not mentioned in the mark scheme.
- All the candidate's work must show evidence of being marked by the examiner.
(a) (i) portable
both have four outer or valency electrons need to share four more
or need four more to complete energy level NOT four bonds
(ii) hard
brittle
high melting or boiling point poor conductor of electricity or semi-conductor any TWO
NOT insoluble in water, NOT tough
NOT appearance
(iii) germanium or carbon

NOT graphite
(c) (i) correctly balanced [1]
(ii) lost oxygen
or decrease in oxidation number
NOT accepts electrons unless valid explanation
(iii) 4 oxygen atoms around 1 silicon atom

2 silicon atoms around 1 oxygen
tetrahedral or diagram that looks tetrahedral
If some wrong chemistry, such as ionic MAX
2/3
2. (a) (i) USA or Texas or Poland or Mexico or Japan or Ethiopia Australia or Sicily
accept other sources of sulphur eg petroleum
or natural gas or metal sulphides or volcanoes
NOT coal, NOT underground
(ii) Preserving food or bleaching or sterilising or disinfecting or making paper or bleaching wood pulp or wine or jam or fumigation or making paper
NOT making wood pulp
(iii) burnt/roast in oxygen or air
(iv) vanadium (V) oxide or vanadium oxide or platinum
ignore oxidation state of vanadium
(v) Increase temperature (increases rate) but reduces yield
catalyst only increases rate or a catalyst does not
influence position of equilibrium
NOT a definition of a catalyst
(vi) sulphur trioxide + sulphuric acid = oleum
correct symbol equation acceptable
(vii) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{H}_{2} \mathrm{SO}_{4}$
(b) (i) potassium
(ii) ammonium sulphate
(iii) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$
(iv) only acceptable responses are:
accepts a proton
[2]
accepts H^{+}[1] only
TOTAL = [14]
3.
(a) dissolved or solution in water

NOT aqueous NOT soluble in water I liquid and g gas
(b) 6 electrons in bond between two nitrogen atoms

2 electrons on each nitrogen
ignore any coding of electrons with dots or crosses
(c) (i) decreases or reaction stops or rate becomes zero
(ii) concentration or number of effective collisions
decreases
used up or less chemical or less collisions etc [1] only
(iii) greater initial slope
same final point
as long as new curve touches the original curve near the top allocate the mark
(iv) greater surface area
(a) (i)
Named soluble zinc salt
corresponding sodium salt
If hydroxide or oxide then 0/2
(ii) Correct equation
not balanced [1] only
(iii) Correct equation
(b) (i) $\mathrm{Fe}^{3+}+3 \mathrm{OH}^{-}=\mathrm{Fe}(\mathrm{OH})_{3}$
(ii) \quad Max at $8 \mathrm{~cm}^{3} \quad$ Same shape of graph

Just the above shape, the height of the precipitate and the volume of sodium hydroxide are irrelevant

Page 4	Mark Scheme	Syllabus
	Chemistry - June 2004	0620

(iii) Maximum then height of precipitate decreases or graph slopes down to x axis or comes to zero
hydroxide dissolves in excess or it is amphoteric
TOTAL = [11]
5.
(a) Has to be three different uses.
any use that depends on malleability or ductilityjewellery, pipes, wires, sheets, roofing, ornaments
NOT that it is malleable or ductile
electrical wires or cooking utensils or electrodes
(good) conductor
making alloys or named alloy
(b) (i) $\mathrm{Cu}^{2+}+2 \mathrm{e}=\mathrm{Cu}$
(ii) gas is oxygen
(copper(II) sulphate) changes to sulphuric acid or copper ions removed from solution
(c) (i) copper atoms - electrons = copper ions accept correct symbol equation
(ii) concentration of copper ions does not change or amount or number of copper ions does not change
copper ions are removed and then replaced or copper is transferred from anode to cathode
(iii) refining copper or plating (core)
or extraction of boulder copper
6.
(a)
(i) correct repeat unit

COND evidence of polymer chain
(ii) glucose or maltose
(iii) addition (polymerisation) or no other product except polymer
condensation (polymerisation) or polymer and water
(b) (i) sodium hydroxide [1]

COND ammonia or alkaline gas or litmus red to blue
(ii) measure pH
more than 1 and less than 7 or correct colour eg orange or yellow NOT red NOT green
OR add magnesium or calcium carbonate weak acid reacts slowly
(c)
(i) ethyl acrylate
[1]
ester or alkene
(ii) brown to colourless (NOT clear)
[1]
correct formula for acid NOT ester

7 (a) Avogadro's Number of particles or formula mass in grams
or 6×10^{23} particles accept atoms, ions and molecules
or as many particles as there are carbon atoms in 12.00 g of ${ }^{12} \mathrm{Ca}$ ANY one
(b) (i) moles of $\mathrm{Mg}=3 / 24=0.125$
moles of $\mathrm{CH}_{3} \mathrm{COOH}=12 / 60=0.200$
magnesium is in excess
OR 3.0 g of magnesium react with 15 g of acid only 12.0 g of acid present magnesium is in excess
(ii) Mark conseq to (i) but NOT to any simple integer moles of $\mathrm{H}_{2}=0.1$
(iii) Mark conseq to (ii) but NOT to any simple integer Volume of hydrogen $=0.1 \times 24$

$$
=2.4 \mathrm{dm}^{3}
$$

(c) (i) moles of $\mathrm{NaOH}=25 / 1000 \times 0.4=0.01$
(ii) Mark conseq to (i) but NOT to any simple integer moles of acid $=0.01 / 2=0.005$
(iii) Mark conseq to (ii) max 10M
concentration of acid $=0.005 \times 1000 / 20$

$$
\begin{equation*}
=0.25 \mathrm{~mol} / \mathrm{dm}^{3} \tag{1}
\end{equation*}
$$

INTERNATIONAL GCSE

MARK SCHEME
MAXIMUM MARK: 40
SYLLABUS/COMPONENT: 0620/05
CHEMISTRY
Practical

Page 1	C
Table of results	

Experiment 1

Temperature boxes completed

Increasing

Table of results

Comparable to supervisor

Experiment 2

Temperature boxes completed 1
Decreasing 1
Comparable to supervisor
(a) All points plotted correctly4
(-1 for each incorrect)
Smooth line graphs 2
Labelled 1
1$\left.\begin{array}{ll}\text { (b) (i) } \begin{array}{l}\text { 1. Value from graph } \\ \\ \\ \\ 2 .\end{array} \quad \text { Value from graph } \pm 0.25\end{array}\right\}$ No unit only (1)1
(ii) 1. Exothermic 1
2. Endothermic 1
(c) Fizz/bubbles/effervescence 1

(c) Fizz/bubbles/effervescence
Solid disappears 1
1(d) $\quad \begin{aligned} & \text { Carbonate } \\ & \text { Fizz with acid or similar }\end{aligned}$(d) $\quad \begin{aligned} & \text { Carbonate } \\ & \text { Fizz with acid or similar }\end{aligned}$1[2]
(e) \quad Solid \mathbf{A} - value from table/room temperature $\pm 3^{\circ} \mathrm{C}$ 1
Solid B - value from table/room temperature 1
Reaction finished 1
Reaction finished

Sub Total

2 (a) White 1
(c) (i) White 1

Precipitate
1
Excess - no change 1
[2]
(ii) No precipitate/change 1
(iii) Paper goes blue 1

Fizz/bubbles etc 1
Reference to smell 1
(iv) pH greater than $7 \quad 1$
(v) Milky/cloudy 1
(d) Calcium 1
(e) Ammonia

INTERNATIONAL GCSE

MARK SCHEME
MAXIMUM MARK: 60
SYLLABUS/COMPONENT: 0620/06
CHEMISTRY
Alternative to Practical

Page 1	Mark Scheme	Syllabus
	IGCSE - June 2004	0620

1 (a)
A Funnel
B Flask
C (Teat) Pipette/dropper
(b) Increase surface area

Reference to rate/efficiency/easily
(c) $\quad \mathrm{pH}$ may be different/vary at different places/fair test
(d) Reference to plants/crops growth

No plants
2 (a) First 4
Second 3
(b) Water and air/oxygen necessary for rusting 1

Statement referring to any tube e.g. no water and air in tube 1/2 1
(a) Bulb lights up/silver liquid/metal formed/bubbles/fizz/lead x
(b) (i) Suitable material e.g. carbon/graphite/steel/Pt/Ag/An
(ii) Indication on diagram of cathode
(c) $\quad \mathrm{Bromine} / \mathrm{Br}_{2}$

Anode/positive
(d) Reference to toxicity of bromine/lead/lead bromideNOT harmful/dangerous

4
Experiment 1 Temperatures correct
2
(-1 any incorrect)
$\begin{array}{llllllllllll}\text { Time/Min } & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 & 4.5 & 5\end{array}$
Temp $/{ }^{\circ} \mathrm{C} \quad 22 \quad 24 \quad 26 \quad 28 \quad 29 \quad 30 \quad 30 \quad 29 \quad 28 \quad 27 \quad 26$
Experiment 2 Temperatures correct
$(-1$ any incorrect $)$
$\begin{array}{llllllllllll}\text { Time/Min } & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 & 4.5 & 5\end{array}$
$\begin{array}{lllllllllllll}\text { Temp } /{ }^{\circ} \mathrm{C} & 21 & 19 & 17 & 15 & 14 & 13 & 13 & 14 & 15 & 16 & 17\end{array}$
(a) Graph. Points plotted correctly
(-1 each incorrect)
Smooth lines/curves
2
Labelled 1
(b) (i) Temperature from graph $29.5^{\circ} \mathrm{C} \quad 1$ $\pm 0.25^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { Temperature from graph } 13.5^{\circ} \mathrm{C} & 1\end{array}$
(ii) 1. Exothermic 1
2. Endothermic 1
(c) Carbonate 1

Fizz/gas with acid 1

5 (a) (i) White
Precipitate
No change/white precipitate/insoluble in excess
(ii) No/thin precipitate/no reaction
(b) Ammonia 1
(c) Reference to limewater/test for carbon dioxide
(d) Nitrate

1
Alkali/hydroxide/oxide
1
6 (a) Indication of copper oxide
1
(b) Black

1
to
red/pink/brown 1
(c) To cool/condense 1 Steam/water 1

7 (a) Anhydrous copper sulphate/cobalt chloride 1
Goes blue/pink in water, no change for ethanol 1
(b) Add indicator/named indicator or $\mathrm{CO}_{3}{ }^{2-} / \mathrm{Mg}$

Turns red/correct colour in acid, no change for sodium sulphate 1
(c) Add silver nitrate 1

White precipitate with hydrochloric acid, no change with nitric acid 1
$8 \quad$ Add known mass of manganese oxide 1
To (measured volume of) hydrogen peroxide 1
Bubbles 1
Test gas with glowing splint 1
Result 1
Filter 1
Dry solid 1
Reweigh and compare 1
(max 6)

