trapapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/02

Paper 2

May/June 2004

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examin	For Examiner's Use			
1				
2				
3				
4				
5				
6				
Total				

1 The diagram shows models of various structures,

A

F

(a) Which **three** of the structures **A** to **F** represent elements? Give a reason for your answer.

structures

reason [2]

(b) Which one of the structures ${\bf A}$ to ${\bf F}$ represents a gas containing single atoms?

______[1]

(c) (i) Which one of the structures A to F represents a gas containing diatomic molecules?

.....

(ii) State the name of a gas which has diatomic molecules.

[2]

(d) (i) Which one of the structures A to F represents graphite?

(ii) State one use of graphite.

[2]

e) Str	ucture D repres	ents a compound.			, Cal
(i)	State what is r	meant by the term <i>cor</i>	mpound.		
					J.C.
(ii)	Which one of	the following substand	ces is structure E mo	ost likely to repre	esent?
	Put a ring arou	und the correct answe	er.		
	ammonia	hydrogen chlor	ide methar	ne water	[2]
) Hy	drogen chloride	is a compound.			
(i)	Draw a diagra chloride.	ım to show how the el	ectrons are arrange	ed in a molecule	of hydrogen
	Show only the	e outer electrons.			
				ow hydrogen elec	
			sr	now chlorine elec	ctrons as x
					[2]
(ii)	State the nam	e of the type of bondi	ng present in hydrog	gen chloride.	
					[1]
(iii)		oride dissolves in wat you would use litmus			
					[2]
(iv)		the following values drochloric acid?	is most likely to re	epresent the pH	of a dilute
	Put a ring arou	und the correct answe	er.		
	pH 2	рН7	pH10	pH14	[1]

		www.xtrapapers.com
	4	For Examiner's Use
(v)	Complete the following equation for the reaction magnesium.	
	$Mg(s)$ + $HCl(aq)$ \rightarrow $MgCl_2(aq)$	+ H ₂ (g) [1]
vi)	Name the salt formed in this reaction.	

Mg(s)	+		HC <i>l</i> (aq)	\rightarrow	MgC <i>l</i> ₂(aq)	+	$H_2(g)$	[1]

(vi)	Name the salt formed in this reaction.
------	--

F 4	•
-11	

Two of the stages in water purification are filtration and chlorination. The diagram below shows a filter tank.

(a)	Explain how this filter helps purify the water.							
			[2]					
(b)	(i)	Why is chlorine added during water purification?						
	(ii)	After chlorination, the water is acidic. A small amount of slaked lime is added to acidic water. Explain why slaked lime is added.	the					
((iii)	What is the chemical name for slaked lime?						
((iv)	State one other use of slaked lime.	[4]					
			[٦]					

6

(c)	(i)	State the	boiling	point of	pure wate	er.				Candy
	(ii)	Describe test	a chem	ical test	for water.					Cambridge.
		result								[1]
	(iii)	State one	use of	water in	the home	Э.				
										[1]
(d)	The	diagram s	shows t	he arran	gement o	f particles in t	he thre	e different	t states of wat	er.
			0							
		0								
		<u> </u>	0					800	<u> </u>]
		Α				В			С	
	Whi	ich of thes	e diagra	ams, A , I	B or C , sh	lows water in	a solid	state?		
						************	•••••			[1]
(e)		am reacts reaction.	with eth	nene in t	he preser	nce of a cataly	/st. Cor	nplete the	word equatio	n for
	ethe	ene	+	steam	\rightarrow					[1]
(f)	Pot	assium rea	acts viol	ently wit	h water. C	Complete the	word e	quation fo	r this reaction	.
	pota	assium	+	water	\rightarrow			+		
										[2]

Whe rele	en lu ased.	mps of	calci	um car	bonat	e read	t with	hydroc	hloric	acid, c	arbon	dioxid	de	Cambi
	CaC	O ₃ (s)	+	2HC <i>l</i> (a	aq)	\rightarrow	CaC l ₂	(aq)	+	CO ₂ (g) -	+ F	1 ₂ O(I)	
(a)				cal meth of react		or inve	stigating	g this r	eactior	n, which	n would	d enat	ole you	u to
											•••••			
														[4]
(b)	Wha	t effect	will th	e follow	ing ha	ave on	the rate	of the	reaction	on?				
	(i) i	increas	ing the	e tempe	rature)								
	(ii) :	adding	water	to the a	ıcid									
((iii) I	using p	owder	ed calci	ium ca	arbona	te inste	ad of Iu	ımps					
		***************************************												[3]
(c)	Desc	cribe a	test fo	r calciur	m ions	S.								
	resul	lt												
	test													
														[3]

(d) Calcium can be obtained by the electrolysis of molten calcium chloride.

	www.xtrapapers.com
	8 For Examiner's
Cal	cium can be obtained by the electrolysis of molten calcium chloride.
(i)	Suggest why calcium must be extracted by electrolysis rather than by reduction with carbon.
	[1] COM
/ii\	Draw the electronic structure of an atom of calcium

(ii) Draw the electronic structure of an atom of calcium.

[2]

[3]

Organic substances have many uses.

For Examiner's Use (a) Match the substances in the boxes on the left with the descriptions in the boxes on the right. The first one has been done for you.

(b) Which one of the following would be least likely to be obtained from the fractional distillation of petroleum? Put a ring around the correct answer.

bitumen ethane ethanol methane [1] (c) Some reactions of organic compounds are shown below.

A
$$n CH_2=CH_2 \longrightarrow (-CH_2-CH_2-)_n$$

B
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

C
$$C_6H_{12}O_6$$
 \longrightarrow $2CO_2 + 2C_2H_5OH$ glucose

D
$$C_8H_{18}$$
 \longrightarrow $C_6H_{14} + C_2H_4$

(1)	vynich one of the reactions, A, B, C or D, shows fermentation?

- (ii) Which one of the reactions, A, B, C or D, shows polymerization?
- (iii) Which **one** of the reactions, **A**, **B**, **C** or **D**, shows combustion?
- (iv) Which one of the reactions, A, B, C or D, shows cracking?
- (d) The hydrocarbon C_8H_{18} is an alkane.
 - (i) What is meant by the term hydrocarbon?

.....

(ii) Explain why this hydrocarbon is an alkane.

[2]

For Examiner's Use

5 Look at the list of five elements below.

argon bromine chlorine iodine potassium

(a)	Put	these five elements in order of increasing proton number.	
		[[1]
(b)	Put	these five elements in order of increasing relative atomic mass.	41
			[1]
(c)		e orders of proton number and relative atomic mass for these five elements are erent. Which one of the following is the most likely explanation for this?	re
	Tick	k one box.	
	The	e proton number of a particular element may vary.	
	The	e presence of neutrons.	
	The	e atoms easily gain or lose electrons.	
		e number of protons must always equal the number of utrons.	1]
		L.	٠,
(d)	Wh	ich of the five elements in the list are in the same group of the Periodic Table?	
		[[1]
(e)	(i)	From the list, choose one element which has one electron in its outer shell.	
			[1]
	(ii)	From the list, choose one element which has a full outer shell of electrons.	
			[1]

For Examiner's Use

(f)	Wh	ich two of the following statements about argon are correct?	Can	036
	Tick	k two boxes.	D	à l
	Arg	on is a noble gas.		idge com
	Arg	on reacts readily with potassium.		
	Arg	on is used to fill weather balloons.		_
	Arg	on is used in light bulbs.	[2]	
(g)		assium chloride can be made by reacting potassium with chlorine. The bon- assium chloride is ionic.	ding in	
	Wh	at does this information tell you about		
	(i)	the boiling point of potassium chloride,		
			[1]	
	(ii)	the electrical conductivity of molten potassium chloride?		
			[1]	
(h)		scribe the change in the electronic structure of potassium and chlorine atoms y combine to make potassium chloride.	s when	
	cha	nge in potassium atom		
	cha	nge in chlorine atom		
			[2]	

For Examiner's Use

- 6 Iron is extracted from its ore in a blast furnace using carbon (coke) as a reducing age as a source of heat.
 - (a) The coke burns in hot air. The equation for this reaction is

 $2C(s) \qquad + \qquad O_2(g) \qquad \qquad \rightarrow \qquad 2CO(g)$

State the name of the gas produced in this reaction.

[1]

(b) Near the top of the blast furnace, the iron(III) oxide in the iron ore gets reduced to iron.

 $Fe_2O_3(s)$ + 3CO(g) \rightarrow 2Fe(I) + $3CO_2(g)$

Use the equation to explain why the change of iron(III) oxide to iron is a reduction reaction.

[1]

(c) In the hottest regions of the furnace, iron(III) oxide is reduced by carbon. Complete the equation for this reaction.

 $Fe_2O_3(s) \quad + \quad C(s) \quad \rightarrow \quad Fe(l) \quad + \quad 3CO(g) \qquad [2]$

ties. The sone men. (d) The iron from the blast furnace contains up to 10% by mass of impurities. The impurities are carbon, silicon and phosphorus. The diagram below shows one met. of making steel from iron.

A mixture of oxygen and basic oxides is blown onto the surface of the molten iron.

(i)	What is the purpos	e of blowing oxygen	onto the molten iron?		
					[1]
(ii)	•	0,	the process of steelm ns which release ene	•	
					[1]
(iii)			rities in the iron an at the slag is less d		
					[1]
(iv)	Which one of the for Put a ring around the	ollowing is a basic ox he correct answer.	de?		
	calcium oxide	carbon dioxide	sulphur dioxide	water	[1]
(v)	Why is steel rather	than iron used for co	nstructing buildings a	nd bridges?	
					[1]

15

(e) Special steels contain added elements such as vanadium, chromium, cobalt or These are all transition metals.

The Periodic Table of the Elements **DATA SHEET**

								1 '	
	0	4 He Helium	20 Neon 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu
	=		19 T Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb
	5		16 Oxygen	32 S Sulphur 16	79 Se Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm
	>		14 N Nitrogen 7	31 P Phosphorus	75 As Arsenic 33	Sb Antimony 51	209 Bi Bismuth		167 Er
	≥		12 Carbon	28 Si Silicon	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead		165 Ho
	=		11 Boron 5	_	70 Ga Gallium 31	115 In Indium 149	204 T 1 Thallium		162 Dy
					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb
					64 Cu Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd
Group	2				59 Ni Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu
Gre	5				59 Cobalt	103 Rh Rhodium 45	192 Ir Iridium		150 Sm
		T Hydrogen			56 Fe Iron 26	Ru Ruthenium 44	190 Os Osmium 76		Pm
					55 Mn Manganese 25		186 Re Rhenium 75		144 Nd
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum		140 Ce
					48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72		
					45 Scandium 21	89 ×	139 La Lanthanum 57 *	Ac Actinium	series eries
	=		9 Be Beryllium	24 Mg Magnesium 12	40 Ca Calcium 20	88 Sr Strontium 38	137 Ba Barium 56	226 Ra Radium 88	58-71 Lanthanoid series 90-103 Actinoid series
	_		7 Li Lithium	23 Na Sodium	39 K Potassium	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 La 90-103 A
Camb	oridae I	nternational F	xaminations i	s nart of the I		ambridge Log	cal Examination	ons Syndicate	(UCLES

_															
noid series id series	140 Ce Cerium 58	Pr Praseodymium 59	Neodymium 60	Pm Promethium 61	Sm Samarium	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium	173 Yb Ytterbium 70	Lu Lutetium 71	10
a = relative atomic mass X = atomic symbol b = proton (atomic) number	232 Th Thorium	Pa Protactinium 91	238 U Uranium	Neptunium	Pu Plutonium	Am Americium 95	Cm Curium	BK Berkelium 97	Cf Californium 98	ES Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	No Nobelium	Lr Lawr	www.xtr
	The	The volume of one mole of any gas is $24\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).	one mole	of any ga	s is 24 dn	at roonء علي	n tempera	ature and	pressure	(r.t.p.).		13	Tage Co.	Camb.	Cannon Connocation

٩

Key

90-103 Actinoid series