trapapers.com

Representation of the control of the

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/02

Paper 2

October/November 2004

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. You may use a calculator.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is provided on page 16.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
Total	

The table below gives some information about the elements in Group I of the Periodic

he table belov	w gives some inforn	2 nation about the ele	ements in Group I o	f the Periodic reactivity with water	For Examiner's Use
element	boiling point / °C	density / g cm ⁻³	radius of atom in the metal / nm	reactivity with water	Se.con
lithium	1342	0.53	0.157		
sodium	883	0.97	0.191	rapid	
potassium	760	0.86	0.235	very rapid	
rubidium		1.53	0.250	extremely rapid	
caesium	669	1.88		explosive	

(a)	How does the density of the Group I elements change down the Group?	
		[2]
(b)	Suggest a value for the boiling point of rubidium.	
		[1]
(c)	Suggest a value for the radius of a caesium atom.	
		[1]
(d)	Use the information in the table to suggest how fast lithium reacts with water compa with the other Group I metals.	red
		[1]
(e)	State three properties shown by all metals.	
	1	
	2.	
	3.	[3]

(f) When sodium reacts with water, hydrogen is given off.

$$2Na(s) \ + \ 2H_2O(I) \ \rightarrow \ 2NaOH(aq) \ + \ H_2(g)$$

(i) State the name of the other product formed in this reaction.

[1]

(ii) Describe a test for hydrogen.

test	
result	[2]

(g) The diagrams below show three types of hydrogen atom.

(i) State the name of the positively charged particle in the nucleus.

		[1]
(ii)	What is the name given to atoms with the same number of positive charges in nucleus but different numbers of neutrons?	the
/:::\	Chata the property of process in a single stage of tritium	[1]
(iii)	State the number of nucleons in a single atom of tritium.	[1 ⁻

(iv) Tritium is a radioactive form of hydrogen.

State **one** medical use of radioactivity.

[1]
 נין

2 The structures of some compounds found in plants are shown below.

Α

$$C = C$$

В

C

D

Ε

(a) Which two of these compounds are unsaturated hydrocarbons?

Γ 1	11	
 Γ.	. 1	

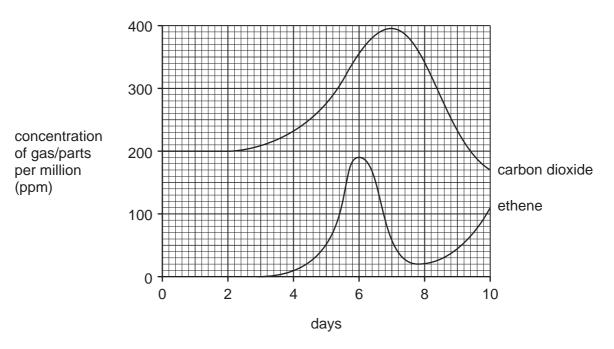
(b) Which two of these compounds contain a carboxylic acid functional group?

-	
	1

(c) Write the molecular formula for compound D.

Г4	П
- 1 1	
L.	_

(d) Draw the structure of the product formed when compound A reacts with bromine.


Show all atoms and all bonds.

(e) Strawberry fruits produce compound A (ethene) naturally.

A scientist left some green strawberry fruits to ripen.

The scientist measured the concentration of ethene and carbon dioxide produced by the strawberry fruits over a ten day period.

The graph below shows the results.

(i)	Between which two days does the rate of ethene production increase most rapid	dly?
		[1]

(ii) What is the name given to the process in which carbon dioxide is produced by living organisms?

Put a ring around the correct answer.

acidification combustion neutralization respiration [1]

(iii) Carbon dioxide concentration over 350 ppm has an effect on ethene production by the fruits.

What effect is this?

[1]

(iv) Ethene gas spreads throughout the fruit by a random movement of molecules.

What is the name given to the random movement of molecules?

Put a ring around the correct answer.

aeration diffusion evaporation ionisation

[1]

[1]

[1]

(f)

	www.xtrapapers.com
	6 For Examiner's
(v)	Ethene gas promotes the ripening of strawberry fruits.
	6 Ethene gas promotes the ripening of strawberry fruits. Ripening of strawberries is slowed down by passing a stream of nitrogen over the fruit. Suggest why this slows down the ripening process.
	Suggest why this slows down the ripening process.
	[1]
(vi)	Enzymes are involved in the ripening process.
	What is an enzyme?
	[2]
A so	nts make a variety of coloured pigments. tudent extracted red colouring from four different plants, R , S , T and U . e student put a spot of each colouring on a piece of filter paper. e filter paper was dipped into a solvent and left for 30 minutes. e results are shown below.
	start of experiment result after 30 minutes
	filter paper filter paper solvent solvent
(i)	What is name given to the process shown in the diagram? [1]

(ii) Which plant contained the greatest number of different pigments?

(iii) Which two plants contained the same pigments?

- Read the following instructions for the preparation of hydrated nickel(II) 3 (NiSO₄.7H₂O), then answer the questions which follow.
 - Put 25 cm³ of dilute sulphuric acid in a beaker.
- WWW. Papa Cambridge.com Heat the sulphuric acid until it is just boiling then add a small amount of nickel(II) 2 carbonate.
 - When the nickel(II) carbonate has dissolved, stop heating, then add a little more nickel carbonate. Continue in this way until nickel(II) carbonate is in excess.
 - 4 Filter the hot mixture into a clean beaker.
 - Make the hydrated nickel(II) sulphate crystals from the nickel(II) sulphate solution. 5

The equation for the reaction is

$$NiCO_3(s)$$
 + $H_2SO_4(aq)$ \rightarrow $NiSO_4(aq)$ + $CO_2(g)$ + $H_2O(l)$

- (a) What piece of apparatus would you use to measure out 25 cm³ of sulphuric acid?
- **(b)** Why is the nickel(II) carbonate added in excess? [1]
- (c) When nickel(II) carbonate is added to sulphuric acid, there is a fizzing.

Explain why there is a fizzing.

[1]

(d) Draw a diagram to describe step 4.

You must label your diagram.

					ww.	wxtrapape
				8	3	Wxtrapape ABBCAMBHA [1]
(e)	Afte	er filtration, which	one of the follow	ving describes the nickel(II) sulphate in the	A Car
	Put	a ring around the	e correct answer			M
	cry	stals	filtrate	precipitate	water	[1]
f)		olain how you wooution of nickel(II)		dry crystals of hydrated ni	ckel(II) sulphate	from the
						[2]
(g)		en hydrated nick n green to white.	xel(II) sulphate i	s heated gently in a tes	t tube, it change	es colour
	(i)	Complete the sy	mbol equation fo	or this reaction.		
		NiSO ₄ .7H ₂ O(s)	Nisc) ₄ (s) +		[1]
	(ii)	What does the s	sign 🚞 mea	an?		
						[1]
	(iii)	How can you onickel(II) sulpha		e of green nickel(II) sulp	ohate starting w	ith white
						[1]

The table below shows the composition of the mixture of gases coming from a typic exhaust.

gas	% of the gas in the exhaust fumes
carbon dioxide	9
carbon monoxide	5
oxygen	4
hydrogen	2
hydrocarbons	0.2
nitrogen oxides	0.2
sulphur dioxide	less than 0.003
gas X	79.6

(a)	Sta	te the name of the gas X .	
			[1]
(b)	The peti	e carbon dioxide comes from the burning of hydrocarbons, such as octane, in trol.	the
	(i)	Complete the word equation for the complete combustion of octane.	
		octane + $ ightarrow$ carbon dioxide +	[2]
	(ii)	Which two chemical elements are present in hydrocarbons?	
			[1]
	(iii)	To which homologous series of hydrocarbons does octane belong?	
			[1]
(c)	Sug	ggest a reason for the presence of carbon monoxide in the exhaust fumes.	F47
			[1]

[2]

[1]

		ogen oxides are present in small quantities in the exhaust fumes. Complete the following equation for the formation of nitrogen dioxide	1
(d)	Nitr	ogen oxides are present in small quantities in the exhaust fumes.	C
	(i)	Complete the following equation for the formation of nitrogen dioxide.	-
		$N_2(g)$ + $O_2(g)$ \rightarrow $NO_2(g)$	[1]
	(ii)	State one harmful effect of nitrogen dioxide on organisms.	
			[1]
(e)		phur dioxide is an atmospheric pollutant which is only found in small amounts in causts.	car
	(i)	What is the main source of sulphur dioxide pollution of the atmosphere?	
			[1]
	(ii)	Sulphur dioxide is oxidised in the air to sulphur trioxide. The sulphur trioxide m dissolve in rainwater to form a dilute solution of sulphuric acid, H_2SO_4 .	ıay
		State the meaning of the term oxidation.	
			[1]
	(iii)	Calculate the relative molecular mass of sulphuric acid.	
			[1]
	(iv)	Sulphuric acid reacts with metals such as iron.	
		Complete the following word equation for the reaction of sulphuric acid with iron.	
		sulphuric acid $+$ iron \rightarrow $+$	

(v) What effect does acid rain have on buildings made of stone containing calcium

carbonate?

Fe	rtilize	rs often contain a	ammonium nitrate.			Call
(a)	(i)	What effect do f	ertilizers have on cr	ops?		TOTAL .
						Cambridge Com
	(ii)	Name one meta	al ion which is comm	only present in fertili	zers.	13
						[1]
	(iii)	Which one of th	e following ions is c	ommonly present in	fertilizers?	l l
		Put a ring aroun	nd the correct answe	r.		
		bromide	chloride	hydroxide	phosphate	[1]
(b)	Des	scribe a test for n	itrate ions.			
	test	t				
	res					[4]
(c)	Am	monium nitrate ca	an be made by addi	ng nitric acid to a sol	ution of ammonia.	
	(i)	What type of rea	action is this?			
						[1]
	(ii)	Complete the sy	mbol equation for th	nis reaction.		
			+ HNO ₃ (a	aq) \rightarrow NH ₄ NO ₃ (a	ıq)	
					_	[1]
(d)			lowing statements a	bout ammonia are tr	ue?	
	Tic	k two boxes.				
	am	monia is insoluble	e in water			
	am	monia turns red li	itmus blue			
	a s	olution of ammon	iia in water has a pH	of 7		
	am	monia has a mole	ecular structure			[2]

6

Www. Papa Cambridge.com The electrolysis of a concentrated solution of sodium chloride, provides us with chem-(a) Sodium chloride has an ionic giant structure. Which **one** of the following is a correct description of a property of sodium chloride. Tick one box. sodium chloride has a low melting point sodium chloride conducts electricity when it is solid sodium chloride has a high boiling point sodium chloride is insoluble in water [1] (b) (i) Explain what is meant by the term *electrolysis*. (ii) At which electrode is hydrogen produced during the electrolysis of aqueous sodium chloride? [1] (iii) Name a suitable substance that can be used for the electrodes. [1] (c) (i) State the name of the particle which is added to a chlorine atom to make a chloride [1] (ii) Describe a test for chloride ions. test result [2]

(d) If chlorine is allowed to mix with sodium hydroxide, sodium chlorate(I), NaOCl is Balance the equation for this reaction.

$$Cl_2$$
 +NaOH \rightarrow NaC l + NaOC l + H $_2$ O

(e) One tonne (1 000 kg) of a commercial solution of sodium hydroxide produced by electrolysis contains the following masses of compounds.

compound	mass of compound kg/ tonne
sodium hydroxide	510
sodium chloride	10
sodium chlorate(V)	9
water	471
total	1000

(i) How many kilograms of sodium hydroxide will be present in 5 tonnes of the solution?

[1]

(ii) All the water from one tonne of impure sodium hydroxide is evaporated.

What would the approximate percentage of the remaining impurities be?

Put a ring around the correct answer.

0.036% 3.6% 36% 96% [1] (f) The hydrogen obtained by electrolysis can be used in the manufacture of marga-

(i) Complete the following sentences about this reaction using words from the list.

catalyst inhibitor monomeric saturated unsaturated

	Hydrogen gas is bubbled through	carbon compounds	
	using a nickel	which speeds up the reaction.	
	The margarines produced are	compounds.	[3]
(ii)	State one other use of hydrogen.		
			[1]

BLANK PAGE

The Periodic Table of the Elements **DATA SHEET**

		0	4 Heium	20 Ne Neon 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Rn Radon 86		
		II/		19 T Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		
		M		16 Oxygen	32 Sulphur	79 Se Selenium	128 Te Tellurium 52	Po Polonium 84		
		^		14 N Nitrogen 7	31 P Phosphorus 5	75 As Arsenic	122 Sb Antimony	209 Bi Bismuth 83		
		N		12 Carbon	28 Si Silicon	73 Ge Germanium	Sn Tin	207 Pb Lead 82		
		=		11 Boron 5	_	70 Ga Gallium 31	115 In Indium 49	204 T (Thallium 81		
2						65 Zn 2inc 30	112 Cd Cadmium 48	201 Hg Mercury 80		
ע רופווע						64 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79		
THE PERIODIC TABLE OF THE EIGHTS	Group					59 Xi Nickel 28	106 Pd Palladium	195 Pt Platinum 78		
	Gre					59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Irdium		
ם ב			1 Hydrogen			56 Fe Iron 26	101 Ru Ruthenium	190 OS Osmium 76		
						Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		
						Chromium	96 Mo Molybdenum 42	184 W Tungsten 74		
						51 V Vanadium 23	93 Nbb Niobium 41	181 Ta Tantalum 73		
						48 Ti Ttanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72		
						45 Scandium 21	89 × Yttrium 39	139 La Lanthanum 57 *	Actinium 89	
		=		9 Be Beryllium	Mg Magnesium	40 Ca Calcium 20	Strontium 38	137 Ba Barium 56	226 Ra Radium 88	
		_		7 Lithium 3	23 Na Sodium	39 K Potassium 19	Rubidium	133 Caesium 55	Fr Francium 87	
of C	ambri	dae Ir	nternational F	yaminations i	s nart of the I		ambridge Loc	al Examination	ons Syndicate	(1

() () ()	140	141	144		150	152	157	159	162	165	167	169	173	175	
id series	Cerium 58	Pr Praseodymium 59	Neodymium 60	Pm Promethium 61	Samarium 62	Eu Europium 63	Gd Gadolinium 64	Tb Terbium 65	Dy Dysprosium 66	Holmium 67	Erbium	Tm Thulium	Yb Ytterbium 70	Lu Lutetium 71	10
a = relative atomic mass X = atomic symbol b = proton (atomic) number	232 Th Thorium	Pa Protactinium 91	238 U Uranium 92	Neptunium	Pu Plutonium 94	Am Americium 95	Curium Curium	BK Berkelium 97	Californium	ES Einsteinium 99	Fm Fermium	Md Mendelevium 101	No Nobelium	Law	Md No Lr lendelevium Nobelium Law
	The v	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).	one mole	of any ga	s is 24 dn	n³ at roor	n tempera	ature and	pressure	(r.t.p.).				Camb	rapar
												•	OG.	-	oers
												13	CON		s.com

٩

Key

*58-71 Lanthanoid series 90-103 Actinoid series