www.xtrapapers.co

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY

Paper 3

0620/03

October/November 2004

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

Candidate Name					
Centre Number			Candidate		
Number			Number		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

WRITE IN THE BOXES PROVIDED ON THE QUESTION PAPER

DO NOT WRITE IN THE BARCODE.

DO **NOT** WRITE IN THE GREY AREAS BETWEEN THE PAGES.

Do not use staples, paper clips, highlighters, glue or correction fluid.

You may use a calculator.

Answer all questions.

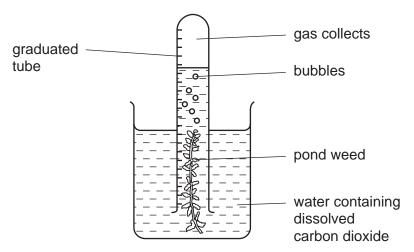
The number of marks is given in brackets [] at the end of each question or part questions.

A copy of the Periodic Table is printed on page 16.

For Examin	er's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

This document consists of 15 printed pages and 1 blank page.

For miner's


	- de	•
(a)	Two of the gases in air are nitrogen and oxygen. Name two other gases pre unpolluted air.	2
	[2]	
(b)	Two common pollutants present in air are sulphur dioxide and lead compounds. State the source and harmful effect of each.	;
	Sulpitul dioxide	
	source	
	harmful effect [3]	<u> </u>
	lead compounds	
	source	
	harmful effect [2]	l
(c)	Respiration and photosynthesis are two of the processes that determine the percentage of oxygen and of carbon dioxide in the air. (i) Name another process that changes the percentages of these two gases in air.	;
	[1]	l
	(ii) The equation for photosynthesis is given below.	
	$6CO_2 + 6H_2O \longrightarrow C_6H_{12}O_6 + 6O_2$	
	This is an endothermic reaction.	
	Complete the reaction for respiration.	
(C ₆ H ₁₂ O ₆ + 6O ₂ → +	

reaction.

This is an

the for miner's

(d) The rate of photosynthesis of pond weed can be measured using the for experiment.

(i)	Describe how	you could	show that the	gas collected in	this experiment	is oxygen.
-----	--------------	-----------	---------------	------------------	-----------------	------------

		[1]

(ii)	What measu	irements are	needed to	calculate the	e rate of thi	s reaction
\ I I I I	vviiai ilicasi		, necaca io	Calculate the	, iaic oi iii	3 I Caciloi

(iii) What would be the effect, and why, of moving the apparatus further away from the light?

[2]

For niner's

2

The salt acid.	copper(II) sulphate can be	e prepared by re	acting copper(II)	oxide with su
Complete	the list of instructions for r	making copper(II)	sulphate using si	
blue	e cool	dilute	filter	
	saturated sulphat	e white	oxide	
Instructio	ns			
1	Add excess copper(II) oxi beaker and boil it.	de to		sulphuric acid in a
2		to remove the	e unreacted coppe	er(II) oxide.
3	Heat the solution until it is		ļ.	
4		the solution t	to form	
	coloured crystals of coppe	er (II)		

CO (g) +
$$2H_2$$
 (g) \rightleftharpoons CH₃OH (g) 300 °C 30atm

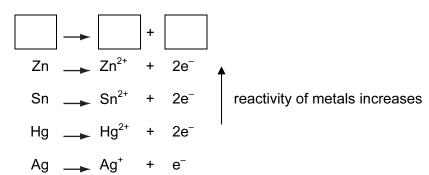
(i)	Reversible reactions can come to equilibrium. Explain the term equilibrium.							
	[1]							

(ii)	At 400 °C, the percentage of methanol in the equilibrium mixture is lower than a	ıt
	300 °C. Suggest an explanation.	

	[2]

(iii) Suggest two advantages of using high pressure for this reaction. Give a reason for each advantage.

advantage	
reason	


advantage	
reason	
	[5]

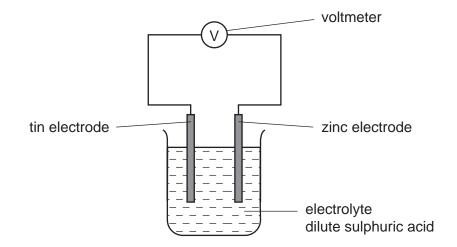
(b) (i)	Complete the equation for the combustion of methanol in an excess of oxygen.	For miner's
	$CH_3OH + $	ridge
(ii)	Complete the word equation.	COM
	methanol + ethanoic acid — +	
	[2]	

(iii)	Methanol car	be oxidised to	an acid.	Name this	acid.
-------	--------------	----------------	----------	-----------	-------

1.4

4 In the following list of ionic equations, the metals are in order of reactivity.

- (a) (i) In the space at the top of the series, write an ionic equation that includes a more reactive metal. [1]
 - (ii) Define oxidation in terms of electron transfer.


[1]

(iii) Explain why the positive ions are likely to be oxidising agents.

[1]

(iv) Which positive ion(s) can oxidise mercury metal (Hg)?

(b) The following diagram shows a simple cell.

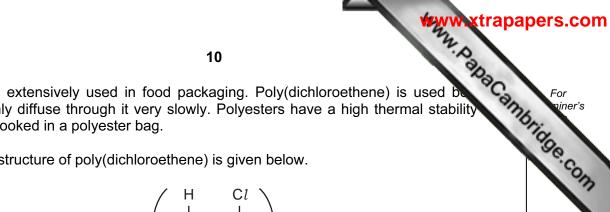
(i) Predict how the voltage of the cell would change if the tin electrode was replaced with a silver one.

[1]

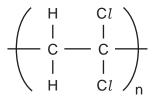
(ii) Which electrode would go into the solution as positive ions? Give a reason for your choice.

[1]

(iii) State how you can predict the direction of the electron flow in cells of this type.


[1]

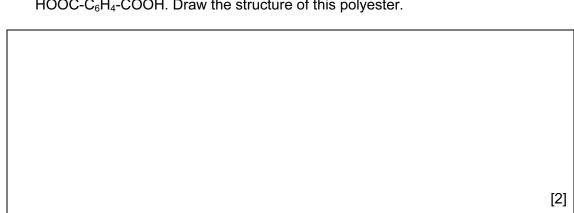
Strontium and sulphur chlorides different properties.	9 both have a formula of the	e type XCl ₂ but the sulphur chloride red liquid	apers.com For piner's
property	strontium chloride	sulphur chloride	Re'C
appearance	white crystalline solid	red liquid	OM
melting point / °C	873	-80	
particles present	ions	molecules	
electrical conductivity of solid	poor	poor	
electrical conductivity of liquid	good	poor	


	formulae of the chlorides are similar because both elements have a valency of 2 lain why Group II and Group VI elements both have a valency of 2.
	[2]
mo Use	w a diagram showing the arrangement of the valency electrons in one covalent lecule of sulphur chloride. Ex to represent an electron from a sulphur atom. Ex o to represent an electron from a chlorine atom.
	[3
lain	the difference in electrical conductivity between the following.
(i)	solid and liquid strontium chloride
	[1
(ii)	liquid strontium chloride and liquid sulphur chloride
	[1
	Dra mol Use Use (i)

(c)

- Polymers are extensively used in food packaging. Poly(dichloroethene) is used by gases can only diffuse through it very slowly. Polyesters have a high thermal stability 6 food can be cooked in a polyester bag.

(a) (i) The structure of poly(dichloroethene) is given below.


Draw the structural formula of the monomer.

													[1]
L													
	(ii)	Fxplain	whv	oxvaen	can	diffuse	faster	through	the	polymer	bag	than	carbon

dioxide can.

[2]

(b) (i) A polyester can be formed from the monomers HO-CH₂CH₂-OH and HOOC-C₆H₄-COOH. Draw the structure of this polyester.

)	Name a naturally occurring class of compounds that contains the ester linkage
	Suggest what is meant by the term thermal stability.
	[1]
	Describe two environmental problems caused by the disposal of plastic (polymer) waste.
	[2]
	The best way of disposing of plastic waste is recycling to form new plastics. What is another advantage of recycling plastics made from petroleum?
	[1]

ww.	ktra	pa	per	S.C	on
4					

(a)	(i) Write a symbol equation for the action of heat on zinc hydroxide.			aCan,
				[2]
	(ii)	Describe what happens when solid	sodium hydroxide is heated	strongly.
				[1]
(b)	Wha	at would be observed when copper(II) nitrate is heated?	
				[3]
(c) Iron(III) sulphate decomposes when heated. Calculate the mass of iron(III) oxide formed and the volume of sulphur trioxide produced when 10.0 g of iron(III) sulphate was heated. Mass of one mole of Fe ₂ (SO ₄) ₃ is 400 g.				
		$Fe_2(SO_4)_3$ (s) \longrightarrow	► Fe ₂ O ₃ (s) + 3SO ₃ (g)	
		Number of moles of $Fe_2(SO_4)_3 =$		
	Ν	lumber of moles of Fe ₂ O ₃ formed =		
		Mass of iron(III) oxide formed =	g	
	N	umber of moles of SO ₃ produced =		
	V	olume of sulphur trioxide at r.t.p. =	dm ³	[5]

www.xtrapa	pers.com
members Ann	For niner's
members	nide c
	NA STATE OF THE ST

- 8 The alkenes are a homologous series of unsaturated hydrocarbons.
 - (a) The table below gives the names, formulae and boiling points of the first members the series.

name	formula	boiling point/°C
ethene	C ₂ H ₄	-102
propene	C₃H ₆	-48
butene	C ₄ H ₈	-7
pentene	C ₅ H ₁₀	30
hexene		

(i)	Complete the table by giving the formula of hexene and by predicting its boiling point.
	[2]
(ii)	Deduce the formula of the alkene which has a relative molecular mass of 168. Show your working.
	[2]

(b) Describe a test that will distinguish between the two isomers, but-2-ene and cyclobutane.

test	
result with but-2-ene	
result with cyclobutane	[3]

(c) Alkenes undergo addition reactions.

	www.xtrapa	apers.com
	14	
enes	s undergo addition reactions.	For miner's
(i)	14 s undergo addition reactions. What class of organic compound is formed when an alkene reacts with water? [1]	Oridge
	[1]	OM
(ii)	Predict the structural formula of the compound formed when hydrogen chloride reacts with but-2-ene.	
		•
	[1]	
(iii)	Draw the structure of the polymer formed from but-2-ene.	
	[2]	

15

BLANK PAGE

Www.xtrapapers.com

Every reasonable effort has been made to trace all copyright holders where the publishers (i.e. UCLES) are aware that third-party material has been reproduced. The publishers would be pleased to hear from anyone whose rights they have unwittingly infringed.

DATA SHEET
The Periodic Table of the Elements

					www.xtrapapers.com
				16	A. Dalla
	0	4 He Heium	20 Neon 10 Neon 40 Ar Argon	Krypton 36 Krypton 36 Krypton 36 Krypton 36 Krypton 54 Redon 88 Radon 88	To No Luterium 102 102 103 175 No Lr Nobelium 102 103 103 103 103 103 103 103 103 103 103
	=		19 Fluorine 9 35.5 C.1 Chlorine	80 Br Bromine 35 127 I I I At Astetine	Yb Yb Nobelium 102
	 		16 Oxygen 8 32 Suphur 16	Se Selenium 34 128 Te Tellurium 52 Polonium 84	Tmullum 69 Mandelevium 101
	>		Nitrogen 7 31 Phosphorus 15	75	Fernium 100
	2		Carbon 6 Carbon 8 Silicon 14	73 Ge Germanium 32 119 Th 50 Th 82 Leed	F
	=		11 B Boron 5 27 A1 Aluminium	70 Ga Gallium 31 115 In Indium 49 204 T Theillum	Dy Dysprosium 66 Cf Californium 98 Cf Pressure
			l	65 Zn Znr 2 Znr 2	Tb Tb Terbium 65 Bk Berkelium 97 ture and p
				64 Cu Copper 29 Silver 108 Ag Silver 197 Au Codd	Gd Gadolinium 64 Cunium 96 Cunium 96 Cunium 1 tempera
dn				59 Nickel 28 106 Pd Palladium 46 Palladium 78	Europium 63 Am Americium 95 at room
Group				59 Cobalt 27 Cobalt 103 Rh Rhodium 45 Ir	Sm Samartium 62 Pu Plutonium 94 S is 24 dm
		T Hydrogen		56 Fe Iron 26 Iron 101 Ru Ruthenium 44 OS	Cetum Prassodymium Promethium Samarium Europium Gadolinium Promethium Samarium Samarium Bushirium Samarium Bushirium Samarium Bushirium Samarium Samarium Bushirium Samarium Samarium Gadolinium Samarium Bushirium Samarium Samarium Gadolinium Samarium Samarium Samarium Samarium Gadolinium Samarium Gadolinium Samarium Samarium Gadolinium Samarium Samarium Gadolinium Samarium Gadolinium Samarium Samarium Gadolinium Gadolinium Samarium Gadolinium Samarium Gadolinium Gadoli
			1	Mn Manganese 25 Technetium 43 186 Re Rhenlum	Nd Neodymium 60 238 Umanium 92 Umanium 92 Umanium 92 Umanium 92 Umanium 92 Umanium 92 Umanium 93 Umanium 93 Umanium 93 Umanium 94 Umanium 95 Um
				52 Cr Chromium 24 96 Mo Molybdenum 42 184 W Tungsten 74	Praseodymium 59 Pa Protactinium 91 Dume of o
				51 V Vanadium 23 83 Nb Niobium 181 Ta Ta Ta Ta	Cerium 58 232 Thorium 90 The Vo
				48 Titanium 22 St 91 Zr Zirconium 40 178 Hf Hathium	mass
				Scandium 21 89 89 Y Y Vitrium 39 139 Lanthanum 57 227	Actinium 89 3id series series a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Bee Beryllium 4 24 Mg Magnesium	Calclum 20 Calclum 88 88 Strontium 38 137 Ba Bantum 56 Bantum 56	- I O -
	_		7 Lithium 3 23 Na Sodium 11	39 K Potassium 19 85 Rb Rubidium 37 133 Caesium 55	*58-71 La 90-103 A Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).