

International General Certificate of Secondary Education

MARK SCHEME for the June 2005 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum mark 80

Www.strapapers.com

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Grade threshold	ds for Syllabus	s 0620 (Chem	istry) in the Ju	ne 2005 exan	hination.	Cambridge Com
	maximum	mir	nimum mark re	equired for gra	ade:	17
	mark available	А	С	E	F	
Component 3	80	58	30	16	11	

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

June 2005

IGCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/03

CHEMISTRY Extended Theory

				WILL WAR	trapapers.com
Pa	ige 1		Mark Scheme IGCSE – JUNE 2005	Syllabus 0620	2
1 (a) (i)	, c b	larker or actual colours hlorine yellow, yellow/green oromine orange, brown, brownish red odine black grey, purple		ABCAMBHIGGE.COM
	(ii		<u>as, liquid, solid</u> Il three needed		[1] 977
	(ii		olourless or (pale) yellow as		[1] [1]
(b) M	lust	have a correct reagent otherwise wc = 0		
	ye	ellov	hlorine water or bubble in chlorine gas v or orange or brown brown or grey crystals		[1] [1]
			ept colour that is darker than for bromide)		[1]
	of y€	ff wł ellov	idd (acidified) silver nitrate(aq) nite or pale yellow or cream <u>precipitate</u> or soluble in aqu v <u>precipitate</u> insoluble in aqueous ammonia pitate essential then either colour or solubility in aqueous		[1] [1] [1]
	ра	ale y	idd lead nitrate(aq) /ellow or off white or cream <u>precipitate</u> v <u>precipitate</u> insoluble in aqueous ammonia		[1] [1] [1]
			pt any test that could work – electrolysis, iron(III) salt ine, potassium dichromate, potassium manganate(VII) e	tc.	
(c			$3Cl_2 = 2ICl_3$ aving either reactants or products correct ONLY [1]		[2]
(d	l) cł C		ne D lower M _r or lower density or lighter molecules or mole	cules move faster	[1] [2]
	0	R	lighter or based on A _r MAX [1] smaller with no additional comment or sieve idea [0] N.B. a total of [3] not [2]		
				тот	AL = 12
2 (a	,		$I_2 = Zn^{2+} + 2I^{-}$ aving either reactants or products correct ONLY [1]		[2]
(b			nc and sodium hydroxide white precipitate lves in excess (only if precipitate mentioned)		[1] [1]
	Μ	lark	nc and ammonia same results either first (sodium hydroxide or aqueous ammonia), if onal [1] can be awarded for stating that the other has the		[1] , then an

Pag	e 2	Mark Scheme	Syllabus	S.
		IGCSE – JUNE 2005	0620	No.
(c)	(i)	zinc <u>and</u> a reason Do not mark conseq to iodine in excess		Canno.
	(ii)	final mass of zinc bigger or the level section higher or less gradient less steep or longer time or falls more slowly	ss zinc used	dup [1
	(iii)	steeper gradient same loss of mass of zinc		[1 [1
				TOTAL = 1
a)	(i)	CH_3 - CH == CH_2		[1
	(ii)	conseq to (i) correct repeat unit COND evidence of continuation		[1 [1
	(iii)	monomer COND because it has a double bond or unsaturated or a NOT addition	ilkene	[1 [1
(b)	(i)	to remove fibres or remove solid NOT precipitate, NOT impurities, NOT to obtain a filtrate		[1
	(ii)	because silver atoms have <u>lost electrons</u> OR oxidation number increased		[1
	(iii)	silver chloride		[1
(c)	(i)	name of an ester formula of an ester if they do not correspond MAX [1] Accept name - terylene for formula ester linkage and continuation If a 'fat' complete structure must be correct e.g. C ₁₇ H ₃₅ et Mark for formula only - [1]	c.	[1 [1
	(ii)	alcohol or alkanol NOT a named alcohol		[1
(d)	(i)	acid loses a proton base accepts a proton		[2 [1
		OR same explanation but acid loses a hydrogen <u>ion</u> (1 and base gains hydrogen <u>ion</u> (1))	
	(ii)	only partially ionised or poor hydrogen ion donor or poor NOT does not form many hydrogen ions in water or low of ions NOT pH		

TOTAL = 15

Page	e 3		Scheme	Syllabus	en la constante
(a)	• •	correct word equation (carl Accept correct symbol equ		0620	VaCambr.
		Must have a correct reager add (acidified) barium chlor COND white precipitate NOT lead(II) compounds		arium ions	oapacambr. [1]
	• •	low pH or universal indicat pH 3 or less	or turns red(aq)		[1]
(b)		$H_2S + 2O_2 = H_2SO_4$ unbalanced [1]			[2]
		unpleasant smell or it is p dioxide or forms sulphuric NOT it is a pollutant	ooisonous or when burnt f acid	forms acid rain or for	ms sulphui [1]
	. ,	2H to 1S COND 8e around sulphur a 2e per hydrogen atom THREE correct TWO from above [1] Ionic structure = [0]	atom		[2]
(c)	(i)	vanadium oxide or vanadiu Must be correct oxidation		entoxide or V_2O_5	[1]
	(ii)	400 to 500° C			[1]
		add to (concentrated) sulpl COND (upon sulphuric acid			[1] [1]
moles of CaS		as of one mole of $CaSO_4 =$ es of $CaSO_4$ in 79.1g = 0.5 es of H ₂ O in 20.9 g = 1.16 seq x = 2	58 accept 0.6		[1] [1] [1]
				т	OTAL = 16
(a)		A is glutamic acid B is alanine Accept names only, NOT I	R _f values		[1] [1]
	• •	because acids are colourle or to show positions of the			[1]
		compare with known acids Accept from colours of sar		tandards	[1]
		amide linkage COND different monomers continuation Accept hydrocarbon part o If nylon 6 then only one mo	of chain as boxes	onomers	[1] [1] [1]

age 4	Mark Sche IGCSE – JUN		Syllabus 0620	
CO	rrect structure as syllabus (box re rrect linkageO ntinuation	presentation)	Syllabus 0620	mbrid
c) (i)	$C_6H_{12}O_6 = 2C_2H_5OH + 2CO_2$ not balanced [1] Accept C_2H_6O			[2]
(ii)	gives out <u>energy</u> or equivalent NOT heat N.B. a total of [1] not [2]			[1]
(iii) glucose used up or yeast 'killed NOT yeast used up	' by ethanol NOT reactant use	ed up	[1]
(iv) oxidise alcohol to acid or to ethan or to carbon dioxide and water or if oxygen present aerobic res or cannot have anaerobic respire NOT it is anaerobic respiration,	spiration ation in presence of oxy		[1]
(v)	fractional distillation			[1]
			TOTAL	= 15
) (i)	bauxite			[1]
(ii)	to reduce melting point or impro or as a solvent or reduce the we	•		[1]
(iii) carbon dioxide or monoxide or :	fluorine		[1]
) (i)	aluminium			[1]
(ii)	solution goes colourless or copp or a <u>brown solid</u> forms or blue of or bubbles NOT goes clear or copper forme	olour disappears		[1]
(iii) covered with an <u>oxide layer</u>			[1]
,	action	no reaction reaction		[1] [1]
l) (i)	$2Al(OH)_3 = Al_2O_3 + 3H_2O$ Not balanced [1]			[2]
(ii)	Aluminium nitrate = aluminium only TWO correct products [1]	n oxide + nitrogen dioxid	le + oxygen	[2]
			TOTAL	= 12