UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the November 2005 question paper

0620 CHEMISTRY

0620/02 Paper 2 (Core Theory)

Maximum mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page	e 1	Mark Scheme	Syllabus	er
	-		IGCSE – NOVEMBER 2005	0620	Day
1	(a)	(i)	N		any.
		(ii)	N/O/F/C1/Br		aba Cambridge
		(iii)	Br		
		(iv)	He/Ne/Ar/Kr		[1]
		(v)	С		[1]
		(vi)	He/C/N/O		[1]
		(vii)	N		[1]
	(b)	(i)	light bulbs/lamps/other suitable uses		[1]
		(ii)	balloons/other suitable uses		[1]
		(iii)	in oxygen tents in hospitals/oxyacetylene welding/otl	ner suitable uses	[1]
	(c)	(i)	8 electrons in outer shell; all other electrons correct i.e. 2,8		[2]
		(ii)	full outer shell/outer shell cannot gain or lose electro configuration with 8 electrons in outer shell	ns/stable electror	nic [1]
					TOTAL 13
2	(a)	NaC1			[1]
	(b)	evapo	ration of the water		[1]
	(c)	3 rd bo	x down ticked		[1]
	(d)	(aque	ous) silver nitrate; white precipitate		[2]
	(e)	(i)	calcium sulphate		[1]
		(ii)	136		[1]
		(iii)	2H₂O		[1]
		(iv)	hydration		[1]
		(v)	H ₂ SO ₄ ; 2		[2]
		(vi)	heat (constantly) given out when anhydrite reacts wi	th water	[1]
	(f)	4 th box	x ticked		[1]

TOTAL 13

www.xtrapapers.com

[2]

Page 2	Mark Scheme	Syllabus
	IGCSE – NOVEMBER 2005	0620

(a) suitable graduated apparatus for gas collection;
 flask + reactants + closed system;
 correct labels (at least 2)

(b) (i) substance which speeds up the rate of a reaction	วท
---	----

(ii)	X;
	slope or gradient greatest/produced most gas in named time interval below 70s
	DCIOW 103

(iii)	same amount of hydrogen peroxide used/all conditions kept the same	[1]
-------	--	-----

(iv)	very high melting or boiling points/high densities/form coloured	
	compounds/form ions with different charges owtte	[2]

(c)	particles (of hydrogen peroxide) move faster;	
	greater frequency of collisions	[2]

(d) (i)	enzymes are from living things/enzymes can be denatured/enzymes	
	specific for one reaction/enzymes are proteins	[1]

(ii)	D	[1]	

		TOTAL 13
4	(a) 2 from calcium/magnesium/sodium;	
	they are metal oxides/oxides of (reactive) metal	s are basic [2]

(b) (i)	nitrogen dioxide; sulphur dioxide	[2]

(ii)	nitrogen dioxide: from car exhausts;	
	sulphur dioxide: from burning fossil fuels	[2]

(c)	(i)	carbon dioxide	[1
-----	-----	----------------	----

(ii)	high temperature (ALLOW: heat)	
	NOT: catalysis on its own	[1]

(d) (i)	too reactive/ahove C in reactivity series owtte	F47

/\	2· CO ₂	[2]
/111	7' (:() ₀	121

(iii)	removal of oxygen from a compound/addition of electrons
	ALLOW: addition of hydrogen

TOTAL 12

[1]

www.xtrapapers.com

GRAND TOTAL 80

	Page 3		Mark Scheme Syllabus		er
			IGCSE – NOVEMBER 2005	0620	No.
5	(a)	metha	ane		Car.
	(b)	A and	В		Orion
	(c)	(i)	С		Papa Cambridge
		(ii)	correct displayed formula = 2 correct displayed formula but not O – H bond = 1		[2]
		(iii)	heated with steam; suitable catalyst		[2]
	(d)	(i)	D		[1]
		(ii)	bromine (water); decolourised		[2]
	(e)	(i)	ethanoic acid		[1]
		(ii)	litmus; goes red/pH paper or meter; below7/bubbles o added to a carbonate	f gas when	[2]
					TOTAL 13
6	(a)	alumir	nium oxide		[1]
	(b)	ions must be free to move		[1]	
	(c)	(i) graphite/carbon		[1]	
		(ii)	to the cathode/negative electrode; Al ions are positive/positive ions are attracted to negative.	tive electrode	[2]
	(d) decre		ased; cryolite; electrical		[3]
	(e)	(i)	aluminum has a low density		[1]
		(ii)	low(er) electrical conductivity		[1]
		(iii)	it is stronger (than aluminum)		[1]
		(iv)	ceramic		[1]
	(f)	(i)	lightweight		[1]
		(ii)	add sodium hydroxide; white ppt; soluble in excess OR		[3]
			add aqueous ammonia; white ppt; insoluble in excess		TOTAL 16