UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2006 question paper

0620 CHEMISTRY

0620/03

Paper 3, maximum raw mark 80

Www.strapapers.com

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pa	age 1		Mark Scheme	Syllabu
			IGCSE – May/June 2006	0620
u n F F	our boxes tio	ysts e oxidatior cked that in cked that in cked that in		Syllabu 0620
(b) (i	i) period 4			[1]
(i	ii) 26 <i>p</i> and 3	30 <i>n</i>		[1]
(c) (i	i) limestone	;		[1]
(i	ii) slag			[1]
(i	iii) iron ore			[1]
	o burn or pro o make carbo		de	[1] [1]
• •	nild steel tainless stee		ars or machinery or fridges etc. Itlery or chemical plants etc.	[1] [1]
				[TOTAL = 12]
	V		least Y [1] ONLY	[2]
	nagnesium opper	W Y	,	[1] [1]
(c) (i			ning splint id ignited goes pop	[1]
(i	or pH pap or high p	indicator (per goes b H, accept	goes blue lue	[1]
	or with m NOT litm ONLY ac	etallic cati us	ons forms a precipitate tralises acids with an observable	[1] e result,
(i	iii) Group 1			[1]
(i	i v) electrolys COND m			[1] [1]
				[TOTAL = 10]

	Page	e 2](Mark Scheme GCSE – May/June 2006	Syllabu 0620
a)	hydi sodi etha All c		ic acid 1 droxide 13 cid 4		Syllabu 0620 Syllabu 0620
(b)	faste	er rate	g acid bulb bright of bubbles ponding commer		[1] [1]
(c)	H⁺ r	not con	F hydrogen ion ditional on protor or [2] is proton ai		[1] [1]
(d)	(i)	CaO a	nd MgO		[1]
	(ii)	CO ₂ ai	nd SO ₂		[1]
	(iii)	Al_2O_3			[1]
	(iv)	CO			[1]
					[TOTAL = 10]
(a)			s around 1 Ge Ihedral or stated	to be	[1] [1]
(b)	(i)	•	ite has layers that can move/s	lin	[1]
			ak bonds betwee		[1]
		Graph	ite has delocalise	ed/free/mobile electrons	[1]
	(ii)	soft	ty <u>and</u> use od conductor	lubricant or pencils electrodes or in electric motors	[1]
(c)	(i)	CO ₂ ai	nd SiO ₂ or XO ₂		[1]
	(ii)		olecular or simp nacromolecular c	le molecules or simple covalent r giant covalent	[1] [1]
(d)	Ge ₂	H_6			[1]
					[TOTAL = 10]

	Page	e 3	Mark Scheme	Syllabu A	
			IGCSE – May/June 2006	0620	02
(a)	(i)	Burn s	sulphur in air (or oxygen)		baCambridg
	(ii)	as a <u>b</u>	bleach		199
	(iii)		cteria/micro-organisms prevents food going bad or rotten or decaying		N
(b)	(i)	decre	ase		[1]
((ii)	exothe			[1]
		endot OR ar The fo	D increase temperature favours back reaction so it is hermic, so forward reaction must be exothermic ny similar explanation will be awarded the mark, for exa prward reaction is not favoured by an increase in tempers s exothermic (rather than endothermic)		[1]
	(iii)	High e Any si	enough for good yield enough for (economic) rate imilar explanation will be awarded the mark just that it is the optimum temperature		[1] [1]
	(iv)	add w	e into (conc) sulphuric acid vater consequential		[1] [1]
				רז	OTAL = 10]
(a)	(i)	Any b	ond that is broken C-H or O=O		[1]
			that is formed C=O or O-H ot insist on double bonds		[1]
	(ii)	than is For ju For - e	energy is released forming bonds s used breaking bonds st - more energy released than used [1] energy is released forming bonds and it is used ing bonds [1]		[1] [1]
(b)	(i)	U 235			[1] [1]
	(ii)		nent of cancer, autoradiographs, tracer, sterilising food, al equipment, measuring thickness, checking welds		[1]
(c)	(i)		tant zinc nt hydrogen (ions)		[1] [1]
	(ii)		esium instead of zinc or increase concentration of acid oper instead of iron		[1]

Page 4		4	Mark Scheme Syllabu	2
			IGCSE – May/June 2006 0620	10an
(i	•		cial protection or stop iron/steel rusting vanising	ambrid
(d) (i)	-	to colo	r purple purless or decolourised ed NOT clear	Papacambridge
(i	•		$e = I_2$ anced ONLY [1]	[2]
				[TOTAL = 15]
a) (i	i)	any co	prrect equation	[1]
(i	•		ural formulae from but-1-ene, but-2-ene, methylpropene lobutane Any TWO	[2]
b) (i	i)	light o	r 200°C or lead tetraethyl	[1]
(i	•		tution or photochemical or chlorination or free radical ogenation	[1]
(i	•	1-chlo Any T	robutane, 2-chlorobutane, dichlorobutane etc. WO	[2]
c) (i	i)	CH₃CI	H ₂ CH ₂ OH or CH ₃ CH(OH)CH ₃	[1]
(i			H(Br)CH₂Br I,3-dibromopropane	[1]
	moles of CH_3 - $CH = CH_2$ reacted = 1.4/42 = 0.033			[1]
n	conseq maximum moles of CH ₃ -CH(I)-CH ₃ that could be formed = 0.033 conseq			[1]
n a	maximum mass of 2-iodopropane that could be formed = 5.61 g accept 170 x 0.033 = 5.61 and 170 x 0.033333 = 5.67 conseq unless greater than 100%		[1]	
р Д)or or se	entage not ma	e yield 4.0/5.67 x 100 = 70.5% ark consequently to a series of small integers. There has to be attempt to answer the question, then consequential marking is	[1]

[TOTAL = 13]

[For paper 12+10+10+10+10+15+13 = 80]