

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2007 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page	2	Mark Scheme Sy	llabus 2 er
		IGCSE – May/June 2007 (0620
ncorrec	tly w	ritten symbol, e.g. NA or CL, should be penalised once in the	e paper.
(a) (i)	coa NC	al or coke or peat I T wood or charcoal	
(ii)	nat refi	ural gas or methane or propane or butane or petroleum g nery gas	gases or calor gas o [1
(b) (i)	pet par die avi fue hea	rol or gasoline raffin or kerosene sel ation fuel or jet fuel l oil avy fuel oil	
	hea An NC	ating oil y TWO y T a named alkane e.g. octane	[2
(ii)	wa Anj	xes or grease or lubricants or polishes or bitumen (tar, asply TWO from the primary or secondary distillation of petroleur	halt) or naphtha [2 m
(iii)	(liq	uid) air or ethanol and water or alkenes (made by crack	ing) or Noble Gase [1
			[Total: 7
good named ACCE I	l exar PT co	nple e.g. sodium chloride prrect formula	[1 [1
silica o named	o r silio I poly	con(IV) oxide or sand or silicon oxide mer only TWO elements	[1
electro good	ns (1] and <u>positive ions</u> [1]	[2 [1
			[Total: 6
(i)	me sul zin	thod C phuric acid (allow if given in equation) c oxide + sulphuric acid = zinc sulphate + water	[1 [1 [1
(ii)	me hyd KC	thod A drochloric acid H + HCl = KCl + H ₂ O	[1 [1 [1
(iii)	me pot Pb No	thod B assium iodide or any soluble iodide ²⁺ + 2l ⁻ = Pbl ₂ accept a correct equation even if soluble ion t balanced - Pb ²⁺ + I ⁻ = Pbl ₂ ONLY [1]	[1 [1 dide is wrong [2
			[Total: 10

[Total: 10]

Page 3	3	Mark Scheme	Syllabus Syllabus
		IGCSE – May/June 2007	0620
a) (i)	Ba	D	Cann -
(ii)	B ₂ C	D_3	
b) (i)	S ²⁻		
(ii)	Ga	3+	
(c) NC	CI ₃		
CC	OND	8e (1bp and 3nbp) around each chlorine 8e (3bp and 1nbp) around nitrogen	
(d) (i)	igno	ore a correct chemical property in (i)	
	van van van	adium narder adium higher melting point or boiling point adium higher density	
	AN OR	Y TWO corresponding statements for potassium	
(::)	NB	has to be comparison	
(11)	pota pota pota	bre a correct physical property in (II) assium more reactive or example of different reactivities assium reacts with cold water, vanadium does not. assium one oxidation state, vanadium more than one	-
	van van	adium coloured compounds, potassium white or colourl adium and its compounds catalysts, not potassium	ess
	AN NB	Y TWO has to be comment about both elements	
(e) (i)	fluc	rine gas	
	asta	atine solid	
(ii)	bot bot	h have valency of one h can react with other elements to form halides	
	or a	n are oxidants any correct Chemistry – they both form acidic hydrides	
	bot bot	h have diatomic molecules h accept one electron or form ion X ⁻	
	bot	h have seven valency electrons	
	bot	h react with metals to form ionic compounds	
		T have a valency of 7	
	AN		
			[Total: 1

Page 4	Mark Scheme	Syllabus er
	IGCSE – May/June 2007	0620
(a) (i)	air would react (with the magnesium or titanium) OR argon would not react (with the metals) NOT argon is inert	ambridg
(ii)	any metal higher than magnesium in reactivity series	[1]
(iii)	add water (to dissolve salt) filter or centrifuge	[1] [1]
(b) (i)	electron loss	[1]
(ii)	hydrogen	[1]
(iii)	oxygen chlorine	[1] [1]
(iv)	it cannot lose electrons (because) it receives electrons (from the battery)	[1] [1]
	OR reduction occurs at the cathode oxidation at the anode (not cathode)	[1] [1]
	OR electrons are "pushed" to rig preventing it from being oxidised	[1] [1]
	for comments of the type – rusting needs oxygen, it is form NOT the idea that titanium is more reactive etc	ed on titanium not iron ONLY [1]
(v)	SET 1 sacrificial protection is a cell does not need electricity cathodic protection is electrolysis cathodic protection needs electricity	
	SET 2 sacrificial protection needs a more reactive metal (in conta this metal corrodes instead of steel cathodic protection needs an inert electrode accept unrea an electrode	ct with iron or steel) ctive or less reactive metal as

[Total: 12]

Ρ	age 5	Mark Scheme	Sylla	abus	·	er
		IGCSE – May/June 2007	06	20	Dar	
(a) alu soc iror filtr	nina or aluminium oxide ium aluminate (III) oxide ation or centrifuge NOT conditional				ambridge
(b) froi <u>car</u> 900 alu cry	n left to right: <u>oon</u> cathode or <u>carbon</u> negative electrode to 1000°C ninium blite				[1] [1] [1] [1]
(c) (i)	Al^{3^+} + $3e = Al$ not balanced [1] $Al^{3^+}(aq) = 0$				[2]
	(ii)	oxygen is formed NOT oxide reacts with carbon anode				[1] [1]
(d) (i)	low density or light or resistant to corrosion accept strength/weight ratio or alloys are strong strong on its own is neutral				[1]
	(ii)	not attacked or corroded or unreactive oxide layer easily shaped or malleable or ductile any TWO				[2]
	(iii)	for strength or so it does not break or does not sag or of NOT steel is a better conductor NOT aluminium protects steel from rusting	can have	pylons	further	apart [1]

[Total: 16]

Pa	age 6	Mark Scheme	Syllabus	er
		IGCSE – May/June 2007	0620	2
(a)	buta no i	anol number needed but if one is given it has to be 1		ambrio
	stru acc	ctural formula (all bonds shown) ept –OH NOT –HO		0
	etha stru acc no o if al	anoic acid ctural formula (all bonds shown) ept –OH NOT –HO conseq marking I bonds are not shown (CH ₃ –CH ₂ –), penalise once	÷	[1] [1]
(b) ((i)	must have correct ester linkage COND continuation and a group on either side of	the ester group	[1] [1]
		Accept -COO-		
	(ii)	accept any sensible suggestion ropes, clothing, bottles, packaging, bags		[1]
(c) ((i)	8		[1]
	(ii)	double bond becomes single and 4 bonds per car COND a bromine atom on each carbon $C_2H_4Br_2$ ONLY [1] accept a structural formula with hydrogen atoms	rbon atom	[1] [1]
	(iii)	corn oil		[1]
(d)	100 884 limi	g of fat react with 86.2g of iodine g of fat react with 762 g of iodine		[1]
	one	mole of fat reacts with 762/254 moles of iodine m mole of fat reacts with 3 moles of iodine molecule	olecules s	[1]
	nun	wher of double bonds in one molecule of fat is 3		[1]

[Total: 14]