www.xtrapapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2007 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			32	
Page 2			Syllabus	er er
		IGCSE – October/November 2007	0620	Par
1	diffusio crystalli fraction filtration	al distillation n As the candidate are selecting from a list, the abov		er [1] eptable [Total: 5]
2	(a) ²³ ₁₁	Na		[1]
	40 18	Ar		[1]
	31 15	P ³⁻ [1] for charge and [1] for symbol etc.		[2]
	AC	Al^{3+} [1] for charge and [1] for symbol etc. CEPT +3 and -3		[2]
	NC	TE Only the above are to be awarded the mark		
		particle B or ²³ ₁₁ Na or sodium COND they have the same proton number or the same number of protons		[1]
	or	the same atomic number T the same number of electrons	,	[1]
	Aco	cept same number of electrons and protons		[Total: 8]
3	` '	(a) Correct ratio MgBr ₂ or Mg 2Br Accept anywhere in space		[1]
	IF 1			
	cor	rect charges Mg ²⁺ and Br ⁻ not be concerned about location of minus sign		[1]
	8e NC	around bromine TE do not require correct coding – just 7 and 1 coded dif TE ignore electrons around magnesium	fferently	[1]
	(b) (i)	pattern or order or regular or repeat or alternate COND positive and negative <u>ions</u> or atoms or molecule NOTE Accept a sketch that shows the above, that is pa way, e.g. any ionic compound such as sodium chloride		[1] [1] regular
	(ii)	Any reason from the list: charges must balance or based on valencies or group II and group VII or 2e in outer level and 7e in outer level or magnesium loses 2 electrons and bromine gains 1 e	lectron (per atom)	[1]
	(iii)	reducing or reduction or reductant lost electrons or given or donated electrons or transferreduced gained or accepted electrons	red (to bromine)	[1] [1] [1] [1] [Total: 10]

[1]

Page 3	Mark Scheme	Syllabus	
	IGCSE – October/November 2007	0620	

- 4 (a) (i) bleach for wood pulp or preserving food or sterilising or in wine making or as a refrigerant or in metallurgy or (liquid) sulphur dioxide is used in the petroleum industry or kill microbes(etc) or insecticide
 - (ii) (react with) oxygen **or** air [1]

 NOT burnt/burn in air/oxygen

 450°C [1]

vanadium oxide catalyst (if oxidation state given has to be correct) **or** platinum If four conditions are given which include high pressure then **MAX** [2] High pressure is incorrect **MAX** 10 atm.

- (iii) ammonium sulphate **or** superphosphate or potassium sulphate or magnesium sulphate [1]
- (b) (i) vaporisation or boiling or evaporation [1] condensation or liquefaction [1]

 NOTE order in which changes are given is not important

 NOT liquid => gas => liquid
 - (ii) to get maximum yield of zinc **or** reduce all zinc oxide

 NOTE the above mark is awarded for why add excess carbon moves equilibrium to right **or** to favours the products **or** removes CO₂ from equilibrium

 NOTE this mark is awarded for how does the addition of excess carbon give max yield of zinc

 NOTE Allow any coherent explanation <u>flexibly</u> based on the above ideas

moves equilibrium to right [1] because carbon dioxide removed [1] to get maximum yield of zinc [1] as equilibrium moves to right [1] ${\bf NOT}$ just to make CO from ${\bf CO}_2$

EXAMPLES:

(c) (i)
$$Zn^{2+} + 2e = Zn$$
 [1]

- (ii) $4OH^{-} 4e = O_{2} + 2H_{2}O$ [2] or $4OH^{-} = O_{2} + 2H_{2}O + 4e$ or $2H_{2}O = 4H^{+} + O_{2} + 4e$ or $2H_{2}O - 4e = 4H^{+} + O_{2}$ oxygen as product [1]
- (iii) sulphuric acid

 NOTE there are no alternative answers to the above
- (d) prevent iron from rusting NOT with galvanising or sacrificial protection making brass or making alloys NOT bronze electroplating or as an electrode in electrolysis cells roofing sacrificial protection coinage

TWO uses [2

[Total: 15]

Syllabus

	- J		IGCSE – October/November 2007	0620			
5 (a)) (i)		librium to left or many molecules and few ions or ally ionised or reverse reaction favoured	Call	Brio		
	(ii)	meth	er donates <u>proton</u> nylamine accepts a proton E If hydrogen ion then ONLY [1] provided both are	0620 Marcall	[1]		
(b)	sma poc	aller <u>c</u> or prof	n 12 more than 7 concentration of hydroxide ions or partially dissociate ton acceptor or poor H ⁺ acceptor a weak base	ed or	[1] [1]		
(c)) (i)	 (i) CH₃NH₂ + HC<i>l</i> = CH₃NH₃C<i>l</i> methylammonium chloride NOTE the equation must be as written, the equation with sulphuric acid has beer given as guidance. 					
	(ii)		vn precipitate CEPT orange or red/brown or brick red or brown/red	j	[1]		
	(iii)	sodi	um hydroxide or any <u>named</u> strong base	[Tota	[1] al: 9]		
(a)) (i)	heat	(energy)		[1]		
	(ii)	exot	hermic		[1]		
	(iii)		₅ OH + 3O ₂ = 2CO ₂ + 3H ₂ O CO ₂ + H ₂ O ONLY [1]		[2]		
	(iv)	strai betw	ing points correctly ght line /een –2640 and –2700kJ/mol 'E minus sign needed		[1] [1] [1]		
	(v)	sam cons simil	eral (molecular) formula e functional group secutive members differ by CH ₂ ar chemical properties or react same way a comment about physical properties				
			' TWO		[2]		
(b))		- CH(OH)-CH ₃ - C ₃ H ₇ OH		[1]		
		prop NOT acce	ean-2-ol "2" is needed E the name and the formula must correspond for be pt full structural formula – all bonds shown correctly		[1]		

accept formulae of the ether ${\bf NOT}$ ${\bf CH_{3}}$ - ${\bf CH(HO)}$ - ${\bf CH_{3}}$

Mark Scheme

Page 4

www.xtrapapers.com

	Dono f	5 Mark Scheme Syllabus IGCSE – October/November 2007 0620			Cyllabus	A Lu	
	Page 5				Syllabus 0620	S. Pr	
		OR steam reforming $CH_4 + H_2O = CO + 3H_2$ [2]			0020	W. PahaCambridge	
	(ii)	catalys combus incomp	er/steam t or heat stion or burning lete or insufficient oxygen/air CEPT steam reforming as abo	[1] [1] ve [2]		[1] [1]	
	(iii)	or volu or fewe or fewe	essure forward reaction volume decre me of reactants greater than the moles of gas on the right er gas molecules on right accept correct arguments abou	at of products	s or products	[1]	
	(d) (i) (ii) (iii)	-	ethanoate oic acid or propanal			[1] [1] [1] [Total: 20]	
7	(a) (i)	ACCER but high	oncentration T without reference to expering the reference to expering the reference to expering the reference concentration must be referenced to the reference collisions or lower rate of the reference collisions or lower rate of the reference collisions.	rred to expt 1		[1]	
	(ii) (iii)	higher or more cond or more cond or more	red so larger surface area so more collisions or higher ratemperature particles move fast particles have enough energy e particles have Ea collide more frequently e particles have energy to react collisions result in a reaction	ter / to react or hav	e more energy	[1] [1] [1]	
			for conformity faster collisions	= rate of collisior	ns	171	

www.xtrapapers.con

Page 6	Mark Scheme	Syllabus	
	IGCSE – October/November 2007	0620	

(b) (i) from origin gradient decreases until = 0 therefore has to be a curve

(ii) mass of one mole of $CaCO_3 = 100$ number of moles of $CaCO_3 = 0.3/100 = 0.003$ [1] moles of $HCl = 5/1000 \times 1 = 0.005$ [1] reagent in excess is $CaCO_3$ [1] ecf from above would need 0.006 moles of HCl or hydrochloric acid only reacts with 0.0025 moles of $CaCO_3$ [1] NOTE this mark needs to show recognition of the 1:2 ratio

(iii) mark ecf to (ii), that is from moles of limiting reagent in (ii) moles of $CO_2 = 0.005 \times 0.5 \times 24 = 0.06 \text{ dm}^3$ [1] NOT cm³ unless numerically correct. 60 cm³ Ignore other units

NOTE If both number of moles integers then no ecf for (ii) and (iii)

[Total: 13]