CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

CHEMISTRY

0620/03
Paper 3 (Extended)
October/November 2007

Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST
Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
A copy of the Periodic Table is printed on page 16.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part questions.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of $\mathbf{1 3}$ printed pages and $\mathbf{3}$ blank pages.

International Examinations

1 A list of techniques used to separate mixtures is given below.

| fractional | simple
 distillation | distillation | crystallization |
| :---: | :---: | :---: | :---: | filtration

From the list choose the most suitable technique to separate the following. water from aqueous copper(II) sulphate helium from a mixture of helium and argon
copper(II) sulphate from aqueous copper(II) sulphate
ethanol from aqueous ethanol
barium sulphate from a mixture of water and barium sulphate

2 The table below gives the number of protons, neutrons and electrons in atoms or ion

particle	number of protons	number of electrons	number of neutrons	symbol or formula
A	9	10	10	${ }_{9}^{19} \mathrm{~F}^{-}$
B	11	11	12	
C	18	18	22	
D	15	18	16	
E	13	10	14	

(a) Complete the table. The first line is given as an example.
(b) Which atom in the table is an isotope of the atom which has the composition 11p, 11e and $14 n$? Give a reason for your choice.
\qquad
\qquad

3 Magnesium reacts with bromine to form magnesium bromide.
(a) Magnesium bromide is an ionic compound. Draw a diagram that shows the formula the compound, the charges on the ions and the arrangement of outer electrons around the negative ion.
The electron distribution of a bromine atom is $2,8,18,7$.

Use x to represent an electron from a magnesium atom.
Use o to represent an electron from a bromine atom.
(b) In the lattice of magnesium bromide, the ratio of magnesium ions to bromide ions is 1:2.
(i) Explain the term lattice.
\qquad
\qquad
(ii) Explain why the ratio of ions is $1: 2$.
\qquad
(iii) The reaction between magnesium and bromine is redox. Complete the sentences.

Magnesium is the \qquad agent because it has
\qquad electrons.

Bromine has been \qquad because it has
electrons.

4 Zinc is extracted from zinc blende, ZnS .
(a) Zinc blende is heated in air to give zinc oxide and sulphur dioxide. Most of the sulph dioxide is used to make sulphur trioxide. This is used to manufacture sulphuric acid. Some of the acid is used in the plant, but most of it is used to make fertilisers.
(i) Give another use of sulphur dioxide.
\qquad
(ii) Describe how sulphur dioxide is converted into sulphur trioxide.
\qquad
\qquad
\qquad
(iii) Name a fertiliser made from sulphuric acid.
\qquad
(b) Some of the zinc oxide was mixed with an excess of carbon and heated to $1000^{\circ} \mathrm{C}$. Zinc distils out of the furnace.

$$
\begin{gathered}
2 \mathrm{ZnO}+\mathrm{C} \rightleftharpoons 2 \mathrm{Zn}+\mathrm{CO}_{2} \\
\mathrm{C}+\mathrm{CO}_{2} \rightarrow 2 \mathrm{CO}
\end{gathered}
$$

(i) Name the two changes of state involved in the process of distillation.
\qquad
(ii) Why is it necessary to use an excess of carbon?
\qquad
\qquad
(c) The remaining zinc oxide reacts with sulphuric acid to give aqueous zinc sulphate is electrolysed with inert electrodes (the electrolysis is the same as that of copper(II) sulphate with inert electrodes). ions present: $\mathrm{Zn}^{2+}(\mathrm{aq}) \quad \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \quad \mathrm{H}^{+}(\mathrm{aq}) \quad \mathrm{OH}^{-}(\mathrm{aq})$
(i) Zinc forms at the negative electrode (cathode). Write the equation for this reaction.
(ii) Write the equation for the reaction at the positive electrode (anode).
\qquad
(iii) The electrolyte changes from aqueous zinc sulphate to
\qquad
(d) Give two uses of zinc.

1. \qquad
2.

5 Methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, is a weak base. Its properties are similar to those of ammonia
(a) When methylamine is dissolved in water, the following equilibrium is set up.

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-} \\
\text {base acid }
\end{gathered}
$$

(i) Suggest why the arrows are not the same length.
\qquad
(ii) Explain why water is stated to behave as an acid and methylamine as a base.
\qquad
\qquad
(b) An aqueous solution of the strong base, sodium hydroxide, is pH 12 . Predict the pH of an aqueous solution of methylamine which has the same concentration. Give a reason for your choice of pH .
\qquad
(c) Methylamine is a weak base like ammonia.
(i) Methylamine can neutralise acids.

$$
2 \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \underset{\text { methylammonium sulphate }}{\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right)_{2} \mathrm{SO}_{4}}
$$

Write the equation for the reaction between methylamine and hydrochloric acid. Name the salt formed.
\qquad
(ii) When aqueous methylamine is added to aqueous iron(II) sulphate, a green precipitate is formed. What would you see if iron(III) chloride solution had been used instead of iron(II) sulphate?
\qquad
(iii) Suggest the name of a reagent that will displace methylamine from one of its salts, for example methylammonium sulphate.

6 The alcohols form a homologous series. The first four members are methanol, propan-1-ol and butan-1-ol.
(a) One characteristic of a homologous series is that the physical properties vary in a predictable way. The table below gives the heats of combustion of the first three alcohols.

alcohol	formula	heat of combustion in $\mathrm{kJ} / \mathrm{mol}$
methanol	$\mathrm{CH}_{3} \mathrm{OH}$	-730
ethanol	$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$	-1370
propan-1-ol	$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$	-2020
butan-1-ol	$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$	

(i) The minus sign indicates that there is less chemical energy in the products than in the reactants. What form of energy is given out by the reaction?
\qquad
(ii) Is the reaction exothermic or endothermic?
\qquad
(iii) Complete the equation for the complete combustion of ethanol.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+$ \qquad $\mathrm{O}_{2} \rightarrow$ $+$
(iv) Determine the heat of combustion of butan-1-ol by plotting the heats of com of the first three alcohols against the number of carbon atoms per molecule.
number of carbon atoms per molecule

(v) Describe two other characteristics of homologous series.
\qquad
\qquad
(b) Give the name and structural formula of an isomer of propan-1-ol. structural formula
name
(c) Methanol is made from carbon monoxide.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \quad \text { the forward reaction is exothermic }
$$

(i) Describe how hydrogen is obtained from alkanes.
\qquad
\qquad
(ii) Suggest a method of making carbon monoxide from methane.
\qquad
(iii) Which condition, high or low pressure, would give the maximum yield of methanol? Give a reason for your choice.
pressure
reason
(d) For each of the following predict the name of the organic product.
(i) reaction between methanol and ethanoic acid
\qquad
(ii) oxidation of propan-1-ol by potassium dichromate(VI)
\qquad
(iii) removal of $\mathrm{H}_{2} \mathrm{O}$ from ethanol (dehydration)
\qquad

7 (a) A small piece of marble, calcium carbonate, was added to $5 \mathrm{~cm}^{3}$ of hydrochloric $25^{\circ} \mathrm{C}$. The time taken for the reaction to stop was measured.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Similar experiments were performed always using $5 \mathrm{~cm}^{3}$ of hydrochloric acid.

experiment	number of pieces of marble	concentration of acid in mol/ dm^{3}	temperature $/{ }^{\circ} \mathrm{C}$	time/min
1	1	1.00	25	3
2	1	0.50	25	7
3	1 piece crushed	1.00	25	1
4	1	1.00	35	2

Explain each of the following in terms of collisions between reacting particles.

(i) Why is the rate in experiment 2 slower than in experiment 1 ?
\qquad
\qquad
(ii) Why is the rate in experiment 3 faster than in experiment 1?
\qquad
\qquad
(iii) Why is the rate in experiment 4 faster than in experiment 1 ?
\qquad
(b) An alternative method of measuring the rate of this reaction would be to measure volume of carbon dioxide produced at regular intervals.
(i) Sketch this graph

(ii) One piece of marble, 0.3 g , was added to $5 \mathrm{~cm}^{3}$ of hydrochloric acid, concentration $1.00 \mathrm{~mol} / \mathrm{dm}^{3}$. Which reagent is in excess? Give a reason for your choice.
mass of one mole of $\mathrm{CaCO}_{3}=100 \mathrm{~g}$
number of moles of $\mathrm{CaCO}_{3}=$ \qquad
number of moles of $\mathrm{HCl}=$ \qquad reagent in excess is \qquad reason
(iii) Use your answer to (ii) to calculate the maximum volume of carbon dioxide produced measured at r.t.p.
\qquad

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
DATA SHEET
The Periodic Table of the

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).
The Periodic Table of the Elements

