

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2008 question paper

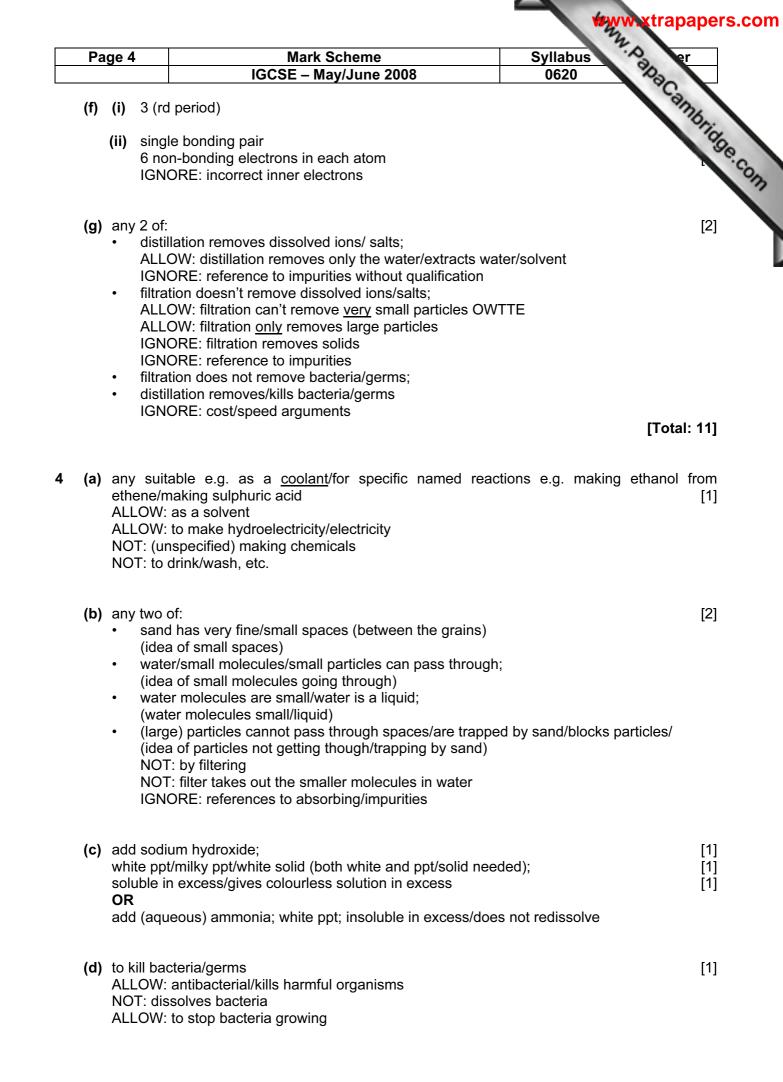
0620 CHEMISTRY

0620/02

Paper 2 (Core Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.


Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pa	ge 2	2	Mark Scheme	Syllabus Syllabus
			IGCSE – May/June 2008	0620
(a)	(i)	B /ca	alcium carbonate/CaCO ₃	Syllabus 0620 (1) (1) (1) (1) (1) (1) (1)
	(ii)	Е		3
	(iii)	C /ca	arbon dioxide/CO ₂	[1
	(iv)	D/et	thane	[1
(b)	bro	mine	water/bromine	[1
()			rises/turns colourless	-
	NO ALI	T: tur _OW:	rns clear : (acidified) potassium manganate(VII); turns colourle E: original colour of bromine/potassium manganate(V	
(c)		cium T: Ca	carbonate aCO ₃	[1
(d)			t/2nd box down ticked than one box ticked = 0	[1
(e)	ALI <u>bor</u> Bo	_OW: <u>nded/j</u> th pa	ce containing <u>more than one</u> type of atom <u>different at</u> more than one type of element/two elements <u>joined/(chemically) combined/combination</u> arts needed . mixture appears = 0	<u>toms</u> [1
(f)	cov	valent		[1
	NO	T: sir	ngle bonding	[Total: 10
(-)	aal			-
(a)	Cal	cium	carbonate	[1
(b)	any • • •	ALL NOT iron acid caus sulp ALL sulp ALL acid	om: ue becomes (chemically) eroded; .OW: statue becomes corroded/amount of limestone in T: destroys limestone/limestone melting/damages the pins corroded/eroded/eaten away OWTTE I rain; sed by burning fossil fuels; ohur dioxide formed/from sulphur in fossil fuels; .OW: nitrogen dioxide formed/from car exhausts ohur dioxide dissolves to form acid; .OW: nitrogen dioxide dissolves to form acid bhuric acid in air .OW: nitric acid in air I reacts with limestone/carbonate/statue/iron/pins T: (unqualified) acid reacts	
		INOI	I. (unqualmeu) aciu reacis	[4

Page		Syllabus er
AL AL NO	IGCSE – May/June 2008 on/pin(s) corrode/rust/eaten away/erode/oxidises LOW: iron pins dissolve away LOW: iron/pins react with (acid) in air DT: iron pins have reacted/weak and break DT: it/the arm has rusted	Syllabus 0620 British Syllabus
) (i)	atoms (of same element) with different number of numbers of nucleons but same number of protons/ sa ALLOW: atoms with same atomic number but differen	neutrons/atoms with different ame elements
(ii)	–/negative 0/no charge +/positive IGNORE: numbers in front of – or +	[[[
(iii)	56 ALLOW: 30 + 26	[
(A /st	iy suitable use e.g. measuring thickness of paper/detec LLOW: checking leakage for suitable substances e.g. w terilization of surfaces/making electricity/power stations/ OT: medical uses	vater/oil)
IG NC	on + nitric acid → iron nitrate + hydrogen NORE: oxidation numbers unless incorrect/dilute (nitric OT: heat on either side of equation/equation without arro LOW: = for arrow	ow
) C <i>l</i>	′ [_] /chloride	[Total: 1 [
	Iphate NORE: oxidation numbers	[
	tassium + sodium (both needed for the mark) LOW: K ⁺ and Na ⁺ /K and Na	[
AL	dium chloride LOW: NaC/ LOW: salt	[
) an	y two of: calcium/magnesium/potassium/sodium	[

2	10 F	Mark Scheme	Syllabus 7.0 or
-ag	je 5	IGCSE – May/June 2008	Syllabus 0620
e)		chlorine + potassium bromide \rightarrow potassium chloride + bro (–1 for each error or omission including no arrows/heat of	omine n left)
(it/iodine is less reactive than bromine/iodine lower in the ORA NOT: iodine lower in the reactivity series than bromide NOT: iodine lower in the reactivity series than potassiur bromine NOT: its not reactive enough/lower in the Periodic Table	[1
)	(i)	exothermic	[1
	(ii)	ionic	[1
(. ,	sodium (atom) loses an electron chlorine (atom) gains an electron [sodium (atom) gives an electron to chlorine = 2] IGNORE: incorrect number of electrons/ reference to cha	[1 [1
		NOTE: any reference to sharing electrons = 0]	[Total: 14
	hydr NO1	ogen/H ₂ : H	[1
))		to ensure all the (sulphuric) <u>acid</u> reacted NOT: to ensure it reacted	[1
	• •	filtration/filter ALLOW: decanting/pouring off the solution NOT: distillation/evaporation of sulphuric acid	[1
- 	ALL NOT	orate water/evaporation/leave in a warm place; DW: heat/boil then allow solution to cool/heat then evapor : not heat/boil (to get the crystals) : crystallisation/allow to crystallise;	rate [1
	-	crystal on filter paper OW: filter off crystals <u>and</u> allow to dry	[1
d) (b	.,	sulphuric acid + magnesium carbonate/hydroxide/oxide or magnesium + a less reactive metal sulphate NOT: magnesium + sulphuric acid (since in question)	[1
(sulphuric acid + magnesium carbonate \rightarrow magnesium ch sulphuric acid + magnesium hydroxide \rightarrow magnesium chl sulphuric acid + magnesium oxide \rightarrow magnesium chloride or e.g. magnesium + copper sulphate \rightarrow magnesium sul ALLOW: correct answer(s) in either parts (i) or (ii) ALLOW: correct symbols equations	loride + water/ e + water

Page 6	Mark Scheme	Syllabus	er
	IGCSE – May/June 2008	0620	2
Al IG IG	ontaminants might harm health/may make you ill/cause LOW: medicine would not work as well/might cause h NORE: contain contaminants/poisonous/kills you NORE: medicine would not work OT: decrease the effect (unless specified of what i.e. c	nealth problem	ambrid
) 6 (g) IF: uni	t incorrect = 0		[1]
f) 97.5 (9	%)		[1]
		[1	Fotal: 10]
, , ,	roup of) molecules/compounds with similar boili ompounds which distil at same place in the fractionatin		nolecules/ [1]
(ii) fu Al	el gas _LOW: methane		[1]
(iii) Ar • • •	hy two of: temperature gradient in column/column hotter at boo different fractions have different boiling points ALLOW: separated according to their boiling points temperature molecules condense/turn from gas to liquid at different molecules condense/turn to liquid when temperature ALLOW: molecules condense at their boiling point; smaller molecules move further up the column ORA larger molecules/molecules with higher boiling point or smaller molecules/molecules with lower boiling = 2	/each fraction forms at a ent heights in the colum e drops below their boili t condense lower in th	a different n; ng point; e column
	l stoves/aircraft (fuel)/(fuel for) lamps OT: fuels for power stations/for burning/starting fires		[1]
Al	ad (surfacing)/(tar for) roofing _LOW: paint OT: tar without qualification		[1]
m IG N N	eaking down of larger molecules/hydrocarbons/conve olecules/large chains to small chains NORE: conditions OT: implication of reacting with something else OT: breaking larger substances to smaller OT: breaking high fractions to low fractions	erting large molecules i	nto small [1]
(ii) C ₁			[1]

[1] ALLOW: other correctly balanced combinations within reason e.g. $C_{10}H_{22} + 2C_2H_4$ or with 3 species

Page 7	Mark Scheme	Syllabus	er
	IGCSE – May/June 2008	0620	030
c) (i)	speeds up rate of reaction ALLOW: alters/changes rate of reaction		er da Cambrida
(ii)	reversible (reaction)/equilibrium (reaction)/reaction IGNORE: exothermic/endothermic	can go both ways	
(iii)	fermentation		[1]
(iv)	turns red/pink; bubbles/ effervescence/fizzes IGNORE: temperature changes/ppt/neutralises NOT: gas/carbon dioxide formed		[1] [1]
			[Total: 13]
ALL mot	y 2 of: crystals dissolve water molecules colliding with crystal diffusion movement of <u>ions</u> NOT: copper particles/copper atoms/copper molec NOT: particles slide over each other movement of <u>water molecules/water particles</u> movement of <u>water molecules/water particles</u> NOT: particles spread out IGNORE: movement from high to low concentration angement: regular OW: particles close together/linear/in lines/lattice/cl tion: none/vibrating T: does not move a lot] n	[2] [1] [1]
spo	able container with filter paper dipping into <u>labelled</u> t above solvent level metal ion where the solvent should be = 0 marks	solvent;	[1] [1]
d) (i)	cathode		[1]
(ii)	pure foil: gets further copper deposit/increases in the ALLOW: gets heavier/mass increases	hickness/gets less shiny	[1]
	ALLOW: $Cu^{2^+} + 2e^- \rightarrow Cu$ (ignore wrong balance) impure foil: copper removed/decreases in thicknes ALLOW: gets lighter/decreases in mass/dissolves/i ALLOW: $Cu \rightarrow Cu^{2^+} + 2e^-$ NOT: wears away	• •	[1]
	NOT: disappears		