Location Entry Codes

WWW strapapers.com As part of CIE's continual commitment to maintaining best practice in assessment, CIE uses different variants of some question papers for our most popular assessments with large and widespread candidature. The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

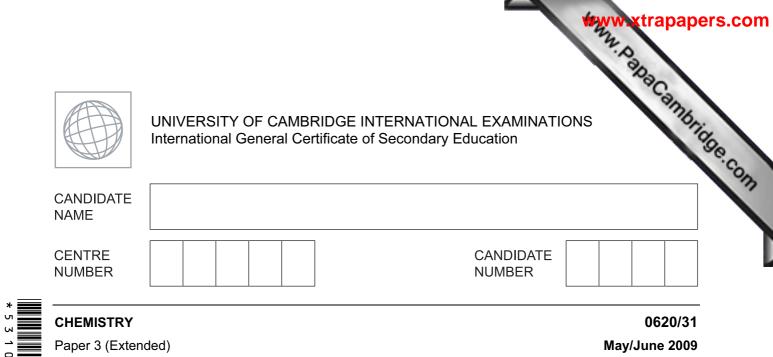
The content assessed by the examination papers and the type of questions is unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiners' Reports that are available.

Question Paper	Mark Scheme	Principal Examiner's Report
Introduction	Introduction	Introduction
First variant Question Paper	First variant Mark Scheme	First variant Principal Examiner's Report
Second variant Question Paper	Second variant Mark Scheme	Second variant Principal Examiner's Report

Who can I contact for further information on these changes? Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk


The titles for the variant items should correspond with the table above, so that at the top of the first page of the relevant part of the document and on the header, it has the words:

First variant Question Paper / Mark Scheme / Principal Examiner's Report ٠

or

Second variant Question Paper / Mark Scheme / Principal Examiner's Report ٠

as appropriate.

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part questions.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	
	I

This document consists of 15 printed pages and 1 blank pages.

	and the second sec	pers.com
	2	
	grass is crushed and mixed with the solvent, propanone. The colour pigmer and to give a deep green solution.	For iner's
(a) (i)	2 grass is crushed and mixed with the solvent, propanone. The colour pigment ad to give a deep green solution. Draw a labelled diagram to describe how you could show that there is more than one coloured pigment in the green solution.	ASE CON
	[3]	
(ii)	Given a pure sample of chlorophyll, how could you show that the green solution from the grass contained chlorophyll?	
	[2]	

(b) Explain the role of chlorophyll in green plants.

1

[3]

[Total: 8]

		3	www.xtrapa
	ents on electrolysis usin first line has been com	g inert electrodes are g	iven in the table change to electrolyte
electrolyte	change at negative electrode	change at positive electrode	change to electrolyte
molten lead(II) bromide	lead formed	bromine formed	used up
	potassium formed	iodine formed	used up
dilute aqueous sodium chloride			
aqueous copper(II) sulfate			
	hydrogen formed	bromine formed	potassium hydroxide formed

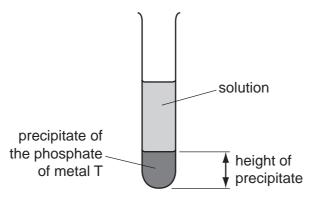
[Total: 8]

			WWW W	trapapers.com
		4	N.D.	
The followi	ing is a list of the e	electron distributions of atc	ms of unknown elements.	Darca For
	element	electron distributio	n	Bacanter For iner's
	A	2,5		See
	В	2,8,4		50m
	C	2,8,8,2		
	D	2,8,18,8		1
	E	2,8,18,8,1		
	F	2,8,18,18,7		
	<u> </u>			
(a) Choos	e an element fron	n the list for each of the fol	lowing descriptions.	
(i) It is	a noble gas.			
(ii) It is	a soft metal with a	a low density.		
(iii) It ca	n form a covalent	compound with element A		
(iv) It ha	s a giant covalent	structure similar to diamo	nd	
	-			
(v) It ca	n form a negative	ion of the type X ³⁻ .		
(b) Eleme	ents C and F can fo	orm an ionic compound.		
(i) Di ar Us	raw a diagram thand the arrangements o to represents	-	of C .	ions
(11)				[3]
(ii) Pr	euici two propert	ies of this compound.		
				[2]
			[Tota	l: 10]

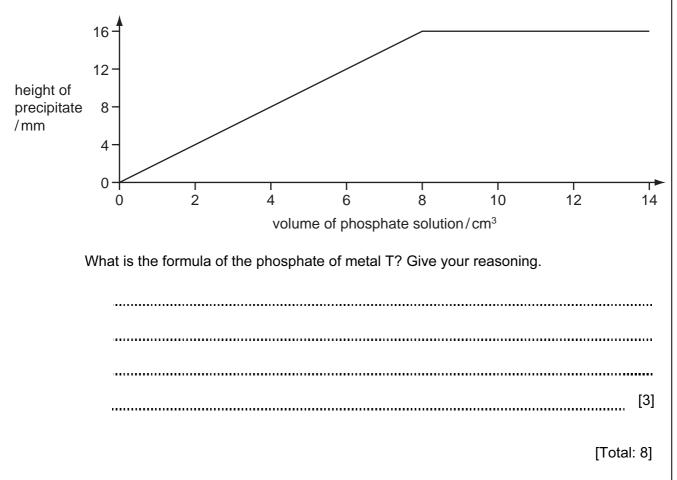
3

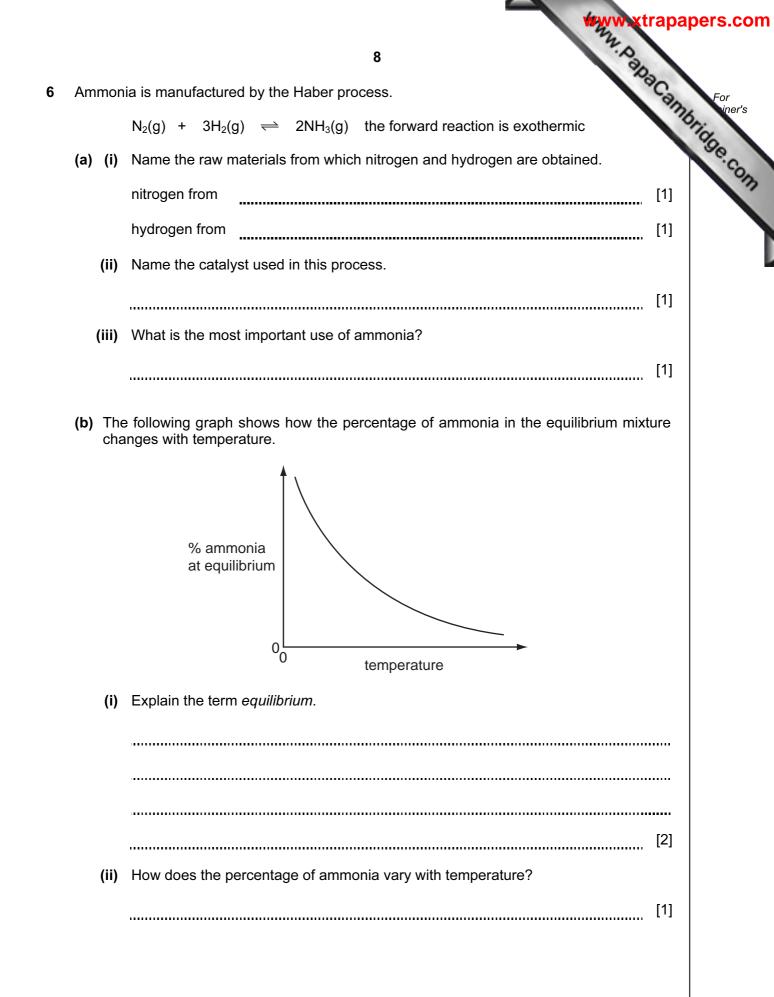
Www.papaCambridge.com 4 The reactivity series of metals given below contains both familiar and unfamiliar ele For most of the unfamiliar elements, which are marked *, their common oxidation states given.

* barium	Ва
* lanthanum	La (+3)
magnesium	
zinc	
* chromium	Cr (+2), (+3), (+6)
iron	
copper	
* palladium	(+2)


Choose metal(s) from the above list to answer the following questions.

(i) Which two metals would not react with dilute hydrochloric acid? [2] (ii) Which two unfamiliar metals (*) would react with cold water? [2] (iii) What is the oxidation state of barium? [1] (iv) Name an unfamiliar metal (*) whose oxide cannot be reduced by carbon. [1] (v) Why should you be able to predict that metals such as iron and chromium have more than one oxidation state? [1] [Total: 7]


WANN, PapaCambridge.com 6 5 Insoluble salts are made by precipitation. (a) A preparation of the insoluble salt calcium fluoride is described below. To 15 cm³ of aqueous calcium chloride, 30 cm³ of aqueous sodium fluoride is added. The concentration of both solutions is $1.00 \text{ mol} / \text{dm}^3$. The mixture is filtered and the precipitate washed with distilled water. Finally, the precipitate is heated in an oven. (i) Complete the equation. Ca^{2+} +F⁻ \longrightarrow [2] (ii) Why is the volume of sodium fluoride solution double that of the calcium chloride solution?[1] (iii) Why is the mixture washed with distilled water? [1] (iv) Why is the solid heated? [1]


(b) The formulae of insoluble compounds can be found by precipitation reactions.

Www.papaCambridge.com To 12.0 cm³ of an aqueous solution of the nitrate of metal T was added 2.0 cm³ aqueous sodium phosphate, Na_3PO_4 . The concentration of both solutions was 1.00 mol/dm³. When the precipitate had settled, its height was measured.

The experiment was repeated using different volumes of the phosphate solution. The results are shown on the following graph.

the equine combined of the com 9 (c) (i) Sketch a graph which shows how the percentage of ammonia in the equil mixture varies with pressure. % ammonia at equilibrium 0 L 0 pressure [1] (ii) Explain why the graph has the shape shown. [2] [Total: 10]

- 7 Hydrogen reacts with the halogens to form hydrogen halides.
- ndothermic) (a) Bond energy is the amount of energy, in kJ, that must be supplied (endothermic) break one mole of a bond.

bond	bond energy in kJ/mol
H—H	+436
C <i>l</i> —C <i>l</i>	+242
H—C/	+431

Use the above data to show that the following reaction is exothermic.

$H-H + Cl-Cl \rightarrow 2H-Cl$

[3]

11 (b) They react with water to form acidic solutions. $HCl + H_2O \rightleftharpoons H_3O+ + Cl^-$ $HF + H_2O \rightleftharpoons H_3O+ + F^-$ (i) Explain why water behaves as a base in both of these reactions.	W. PapaCambridge.
$HCl + H_2O \rightleftharpoons H_3O+ + Cl^-$ $HF + H_2O \rightleftharpoons H_3O+ + F^-$	Sanbridge
$HF + H_2O \iff H_3O+ + F^-$	Abridge
	90
(i) Explain why water behaves as a base in both of these reactions.	
	[2]
(ii) At equilibrium, only 1% of the hydrogen chloride exists as molecules formed ions. In the other equilibrium, 97% of the hydrogen fluor molecules, only 3% has formed ions.	
What does this tell you about the strength of each acid?	
	[2]
(iii) How would the pH of these two solutions differ?	
	[1]

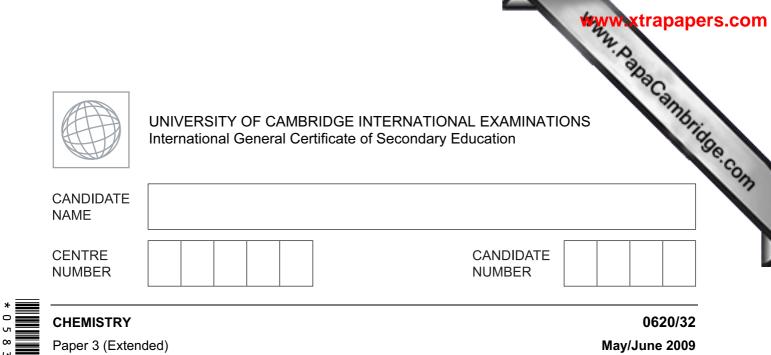
[Total: 8]

	12 cid can be made from corn starch. CH ₃ —CH—COOH OH	ipa
actic a	cid can be made from corn starch.	2
	CH ₂ —CH—COOH	am
	СН ₃ —СН—СООН ОН	
	lactic acid	
t nolvm	erises to form the polymer, polylactic acid (PLA) which is biodegradable.	
	ggest two advantages that PLA has compared with a polymer made from petroleum	۱.
-,		
	[]	2]
•••••	L ⁴	-1
b) The	e structure of PLA is given below.	
	$-O-CH - CH_{3} - O-CH - O-O-CH - O-O-O-CH - O-O-O-CH - O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-$	
(i)	What type of compound contains the group that is circled?	
	[1]
(ii)	Complete the following sentence.	
	Lactic acid molecules can form this group because they contain both an	
	group and an group. [2	2]
(iii)	Is the formation of PLA, an addition or condensation polymerisation? Give reason for your choice.	а
	[2	2]

		www.xtrapapers.c	om
		13 · · · · · · · · · · · · · · · · · · ·	
(c)	Wh	nen lactic acid is heated, acrylic acid is formed.	-
		13 hen lactic acid is heated, acrylic acid is formed. $H = \begin{pmatrix} H & H \\ -C & -C & -COOH \\ H & OH \end{pmatrix} = \begin{pmatrix} H & H \\ -C & -C & -COOH \\ H & COOH \end{pmatrix}$	m
		lactic acid acrylic acid	Ŋ
	(i)	Complete the word equation for the action of heat on lactic acid.	
		lactic acid \rightarrow [1]	
	(ii)	Describe a test that would distinguish between lactic acid and acrylic acid.	
		test result for lactic acid	
		result for acrylic acid [3]	
	(iii)	Describe a test, other than using an indicator, which would show that both chemicals contain an acid group.	
		test	
		result	
		[2]	

[Total: 13]

	WWW Xtr	apap
	14	
	antities of chemicals, expressed in moles, can be used to find the formula npound, to establish an equation and to determine reacting masses.	Camp
(a)	14 antities of chemicals, expressed in moles, can be used to find the formula npound, to establish an equation and to determine reacting masses. A compound contains 72% magnesium and 28% nitrogen. What is its empiric formula?	cal
		[2]
(b)	A compound contains only aluminium and carbon. 0.03 moles of this compound react with excess water to form 0.12 moles of $Al(OH)_3$ and 0.09 moles of CH_4 .	ed
	Write a balanced equation for this reaction.	
		[2]
(c)	0.07 moles of silicon reacts with 25 g of bromine.	
	Si + $2Br_2 \longrightarrow SiBr_4$	
	(i) Which one is the limiting reagent? Explain your choice.	
		[3]
	(ii) How many moles of SiBr ₄ are formed?	
		[1]
	[Total:	8]



BLANK PAGE

											10	6								M.	N.D.	hahe
	0	4	Heium	00	NP V	Neon 10	40	Ar Argon 18	84	Kreton	36	131 Xe	Xenon 54		Radon 86			175 Lu	71	Lr Lawrencium	N Dana 10 10 10 10 10 10 10 10 10 10	amb
-	II>				2 LL	Θ	35.5	C1 Chlorine 17	80	Br Bromine		127 T	Ð		At Astatine 85			173 Yb		Nobelium	102	102
	>			4	2 C	Oxygen 8	32			Selenium Selenium	34	128 Te	Tellurium 52	1	Polonium 84			169 Tm	69	Md Mendelevium	101	
-	>			44	Z	Nitrogen 7	31	Phosphorus 15	75	AS Arsenic	33	122 Sh	Antimony 51	209	Bismuth 83			167 Erhium	68	Fm Fermium		
-	≥			10	4 C	Carbon 6	28	Silicon 14	73	Germanium Germanium	32	110 N 1	50 Tin	207	PD Lead 82			165 Ho	6		99 e (r.t.p.).	
-	≡			÷		5 Boron	27	Auminium 13	70	Galium Gallium	31	115 I n	Indium 49	204	Ttallium 81			¹⁶² Durante	66	Cf Californium	91 92 93 94 95 96 97 98 99 The volume of one mole of any gas is 24 dm ³ at room temperature and pressure (r.t.p.).	
									65	Zn Zinc	30	112 112	Cadmium 48	201	Mercury 80			159 Tb	65	BK Berkelium	erature an	
									64	Copper	29	108 A C	Silver 47	197	Au Gold 79			157 Gdd	64	Currium Currium	om tempe	
Group									59	Nickel	28	106 PG	4 ⁶	195	Platinum 78				63	Am Americium	dm ³ at roo	
0				7					59	Cobalt Cobalt	27	103 Rh	45 45	192	Lr Iridium 77				62	Plutonium	⁹⁴ gas is 24	
		-	Hydrogen						56	E Ion	26	101 R	n Ruthenium 44	190	OS Osmium 76			Pm	-	Neptunium	le of any	
									55		25	Ľ	43 Te	186	Rhenium 75				60	Uranium Uranium	of one mo	
									52	Chromium		° N	42 Mc	184	74 74				59	Protactinium	e volume e	
									51	Ŋ		03 ND	4		m Tantalum 73			140 Ce	58	232 Thorium	06	
									48		22	9 7	40 Zi		Mathium + 72		+ 4	S		a = relative atomic mass X = atomic symbol	b = proton (atomic) number	
-					ď	lium	+	G ssium		a Scandium	2	° ≻	39		um Lanthanum 57		ium Actinium 89	*58-71 Lanthanoid series 190-103 Actinoid series	:	a = relative atomic X = atomic symbol		
	=			2		4		ium Mgnesium 12		K Calcium	20	85 Rh Sr	° 8		sium Barium 56		cium Radium 88	*58-71 Lanthanoid serie 190-103 Actinoid series		α 🗙	۵	
	_					3 Lithium	5	Sodium 11	ő	Potassii X	19	°Ω	Rubidium 37	₩ (CS Caesium 55	Ŀ	Francium 87	*58-7 †90-1		Key		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part questions.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 15 printed pages and 1 blank page.

	a statiapa	pers.com
	2	
	grass is crushed and mixed with the solvent, propanone. The colour pigmented to give a deep green solution.	For viner's
(a) (i)	2 grass is crushed and mixed with the solvent, propanone. The colour pigment ad to give a deep green solution. Draw a labelled diagram to describe how you could show that there is more than one coloured pigment in the green solution.	Age com
	[3]	
(ii)	Given a pure sample of chlorophyll, how could you show that the green solution from the grass contained chlorophyll?	
	[2]	

(b) Explain the role of chlorophyll in green plants.

1

[3]

[Total: 8]

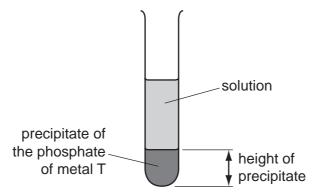
			iven in the table
	:	3	i og
The results of experime	ents on electrolysis usin	g inert electrodes are g	iven in the table
Complete the table; the	e first line has been com	pleted as an example.	132
electrolyte	change at negative electrode	change at positive electrode	change to electrolyte
molten lead(II) bromide	lead formed	bromine formed	used up
	lithium formed	chlorine formed	used up
dilute aqueous sodium chloride			
aqueous copper(II) sulfate			
	hydrogen formed	bromine formed	potassium hydroxide formed

[Total: 8]

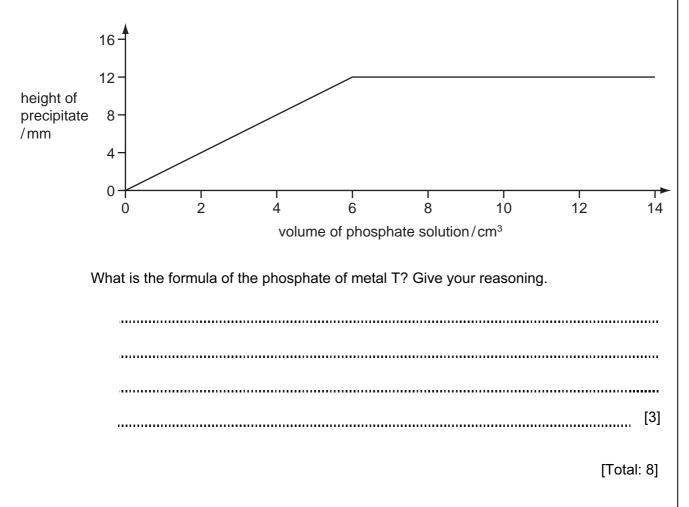
			www.xt	rap
		4	of unknown elements.	
follow	ing is a list of the e	electron distributions of atoms	of unknown elements.	Ca
	element	electron distribution		
	Α	2,6		
	В	2,8,4		
	С	2,8,8,2		
	D	2,8,18,8		
	E	2,8,18,8,1		
	F	2,8,18,18,7		
It ca It ha It is Eleme (i) D a U	as a giant covalent a diatomic gas wit ents C and A can f raw a diagram tha nd the arrangement se o to represent a	compound with element A . structure similar to diamond. h molecules of the type X ₂ . orm an ionic compound.		[5] ons
(ii) P 	redict two properti	es of this compound.		[3]
			[Total:	101

Www.papaCambridge.com 4 The reactivity series of metals given below contains both familiar and unfamiliar ele For most of the unfamiliar elements, which are marked *, their common oxidation states given.

* barium	Ва
* lanthanum	La (+3)
magnesium	
zinc	
* chromium	Cr (+2), (+3), (+6)
iron	
copper	
* palladium	(+2)


Choose metal(s) from the above list to answer the following questions.

(i) Which two metals would not react with dilute hydrochloric acid? [2] (ii) Which two unfamiliar metals (*) would react with cold water? [2] (iii) What is the oxidation state of barium? [1] (iv) Name an unfamiliar metal (*) whose oxide cannot be reduced by carbon. [1] (v) Why should you be able to predict that metals such as iron and chromium have more than one oxidation state? [1] [Total: 7]


Wan, Daba Cambridge.com 6 Insoluble salts are made by precipitation. (a) A preparation of the insoluble salt iron fluoride is described below. To 15 cm³ of aqueous iron(III) chloride, 45 cm³ of aqueous sodium fluoride is added. The concentration of both solutions is 1.00 mol / dm³. The mixture is filtered and the precipitate washed with distilled water. Finally, the precipitate is heated in an oven. (i) Complete the equation. Fe³⁺ +F⁻ -→ [2] (ii) Why is the volume of sodium fluoride solution three times that of the iron(III) chloride solution? [1] (iii) Why is the mixture washed with distilled water? [1] (iv) Why is the solid heated? [1]

(b) The formulae of insoluble compounds can be found by precipitation reactions.

Www.PapaCambridge.com To 18.0 cm³ of an aqueous solution of the nitrate of metal T was added 2.0 cm³ aqueous sodium phosphate, Na_3PO_4 . The concentration of both solutions was 1.00 mol/dm³. When the precipitate had settled, its height was measured.

The experiment was repeated using different volumes of the phosphate solution. The results are shown on the following graph.

Www.papaCambridge.com 8 6 Ammonia is manufactured by the Haber process. $N_2(g) +$ $3H_2(g) \rightleftharpoons 2NH_3(g)$ the forward reaction is exothermic (a) (i) Name the raw materials from which nitrogen and hydrogen are obtained. nitrogen from hydrogen from [1] (ii) Name the catalyst used in this process. [1] (iii) What is the most important use of ammonia? [1] (b) The following graph shows how the percentage of ammonia in the equilibrium mixture changes with pressure. % ammonia at equilibrium 0 0 pressure (i) Explain the term equilibrium. [2] (ii) How does the percentage of ammonia vary with pressure? [1]

- 7 Hydrogen reacts with the halogens to form hydrogen halides.
- ndothermic) (a) Bond energy is the amount of energy, in kJ, that must be supplied (endothermic) break one mole of a bond.

bond	bond energy in kJ/mol
H—H	+436
F—F	+158
H—F	+562

Use the above data to show that the following reaction is exothermic.

 $H-H + F-F \rightarrow 2H-F$

 •••••	 •••••	 ••••
		เวเ
 	 	 []]

For iner's (b) They react with water to form acidic solutions. $HCl + H_2O \implies H_3O^+ + Cl^ HF + H_2O \implies H_3O^+ + F^-$ (i) Explain why water behaves as a base in both of these reactions. [2] (ii) At equilibrium, only 1% of the hydrogen chloride exists as molecules, the rest has formed ions. In the other equilibrium, 97% of the hydrogen fluoride exists as molecules, only 3% has formed ions. What does this tell you about the strength of each acid? [2] (iii) How would the pH of these two solutions differ? [1]

[Total: 8]

	www.xtrap
	12 acid can be made from corn starch. $CH_3 - CH - COOH$ OH lactic acid
Lactic a	acid can be made from corn starch.
	СН ₃ —СН—СООН ОН
	ÓН
	lactic acid
lt polyn	nerises to form the polymer, polylactic acid (PLA) which is biodegradable.
(a) Su	ggest two advantages that PLA has compared with a polymer made from petroleum.
	[2]
(b) Th	e structure of PLA is given below.
	CH ₃ O CH ₃
	$-O-CH - CH_{3} - O-CH - CH_{3}$
(i)	What type of compound contains the group that is circled?
	[1]
(ii)	Complete the following sentence.
	Lactic acid molecules can form this group because they contain both an
	group and angroup. [2]
(iii)	Is the formation of PLA, an addition or condensation polymerisation? Give a reason for your choice.

		www.xtrapapers.c	om
		13 · · · · · · · · · · · · · · · · · · ·	
(c)	Wh	nen lactic acid is heated, acrylic acid is formed.	0
		13 nen lactic acid is heated, acrylic acid is formed. $H = \begin{pmatrix} H & H \\ -C & -C & -COOH \\ H & OH \end{pmatrix} = \begin{pmatrix} H & H \\ -C & -C & -COOH \\ H & OH \end{pmatrix} = \begin{pmatrix} H & H \\ -C & -C & -COOH \\ H & COOH \end{pmatrix}$	n
		lactic acid acrylic acid	Ŋ
	(i)	Complete the word equation for the action of heat on lactic acid.	
		lactic acid \rightarrow [1]	
	(ii)	Describe a test that would distinguish between lactic acid and acrylic acid.	
		test result for lactic acid	
		result for acrylic acid [3]	
	(iii)	Describe a test, other than using an indicator, which would show that both chemicals contain an acid group.	
		test	
		result	
		[2]	

[Total: 13]

		14	pa
		es of chemicals, expressed in moles, can be used to find the formula ind, to establish an equation and to determine reacting masses.	m
	Ac	14 es of chemicals, expressed in moles, can be used to find the formula and, to establish an equation and to determine reacting masses. compound contains 72% magnesium and 28% nitrogen. What is its empirical nula?	
			•
		[2]]
(b)		ompound contains only aluminium and carbon. 0.03 moles of this compound reacted n excess water to form 0.12 moles of A <i>l</i> (OH) ₃ and 0.09 moles of CH ₄ .	I
	Wri	te a balanced equation for this reaction.	
			•
			•
		[2]]
(c)	0.08	8 moles of silicon reacts with 7.2 g of fluorine.	
		Si + $2F_2 \longrightarrow SiF_4$	
	(i)	Which one is the limiting reagent? Explain your choice.	
			•
			•
			•
		[3	
	(ii)	How many moles of SiF₄ are formed?	1
	_ •	[1]]
		[Total: 8]	J

BLANK PAGE

											10	6								Mr.	watu ahaha
	0	4	2 Helium		ND N	Neon 10	40	Ar Argon 18		Kronton Kronton	36	131 Xe	Xenon 54	ć	Radon 86			175 Lu Lutetium	71	Lr Lawrencium	Papa Cambrid
	II>	-			≗⊔	Θ	35.5	C1 Chlorine 17		Br		127 T	Ð		At Astatine 85		-	173 Yb terbium	02	Nobelium Nobelium	
	>		46	² C	Oxygen 8	32	۵۵ Sultur 16		Selenium	34	128 Te	Tellurium 52	ć	Polonium 84			169 Thulium	69	Md Mendelevium	5	
	>			5	± 2	Nitrogen 7	31	Phosphorus 15	75	AS	33	122 Sh	Antimony 51	509	Bismuth 83		-	167 Erbium	68	Fermium Fermium	
	≥			÷	² O	Carbon 6	28	Silicon 14	73	73 Germanium 32	32	119 Sn	50 Tin	207	207 Pb Lead 82		-		67	Einsteinium	e (r.t.p.).
	≡			-	- 00	5 Boron	27	Aluminium 13	70	Galium	31	115 In	Indium 49	204	Thallium 81		-	162 Dysprosium	66	Californium Californium	The volume of one mole of any gas is 24 dm ³ at room temperature and pressure (r.t.p.).
Group									65	Zn ^{Zine}	30	112 D	Cadmium 48	201	Mercury 80		-		65	Berkelium	erature an
									64	Cu	29	108 A C	Silver 47	197	Gold 79		-	157 Gd Gadolinium	64		om tempe
									59	Nickel	28	106 D	- ⁴	195	Platinum 78		-		63	Americium oc	dm ³ at roo
				7					28	Cohat Cohat	27	103 Rh	45 F	192	Lr Iridium 77		-	150 Samarium	62		gas is 24
		-	Hydrogen						56	E E	26	101 R	n Ruthenium 44	190	Osmium 76		-		61	Neptunium	le of any
									55		25	Ē	43 Te	186	Rhenium 75		-	144 Neodymium	60		of one mo
									52	Chromitian Chromitian		[%]	Mc 42	184	74 74		-		20		nulume e
												93 ND	14		m Tantalum 73			140 Cerium	28		06
											53	2 g	40 Zi		Hafnium * 72		+ 5	S	a = relative atomic mass	 X = atomic symbol b = proton (atomic) number 	
					a	lium (+	g sium		a Scandium Scandium	0	د ۳	39 [`]		um Lanthanum 57		ium Actinium 89	*58-71 Lanthanoid series †90-103 Actinoid series	a = relative	X = atomic symbolb = proton (atomic)	
	=			0	_	4	-	a Magnesium 12		K Calcium Calcium	20	⁸⁵ 88 Rh Sr	38 °		sium Barium 56		cium Radium 88	*58-71 Lanthanoid serie 190-103 Actinoid series	σ	• ×	
	_					Lithium 3	5	Sodium 11			19	° C	Rubidium 37	₩ ₩	CS Caesium 55	Ę	Francium 87	*58-7 †90-1		Key	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of