UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Wany, Dana Cambridge, com MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

GENERAL INSTRUCTIONS FOR MARKING

- Www.papacambridge.com Error carried forward may be allowed in calculations. This will be discussed in the scheme. This is not applied when the candidate has inserted incorrect integers or when answer is physically impossible.
- **COND** the award of this/these mark(s) is conditional upon a **previous** mark being awarded. Example – Is the reaction exothermic **or** endothermic? Give a reason for your choice. Mark scheme exothermic [1] COND a correct reason given [1]. This mark can only be awarded if the candidate has recognised that the reaction is exothermic.
- When the name of a chemical is demanded by the question, a **correct** formula is usually • acceptable. When the formula is asked for, the name is not acceptable.
- When a word equation is required a **correct** symbol equation is usually acceptable. If an equation is requested then a word equation is not usually acceptable.
- An incorrectly written symbol, e.g. NA or CL, should be penalised once in a question. •
- In the mark scheme if a word **or** phrase is underlined it (**or** an equivalent) is required for the award of the mark. (.....) is used to denote material that is not specifically required.
- **OR** designates alternative and independent ways of gaining the marks for the question. or indicates different ways of gaining the same mark.
- Unusual responses which include correct Chemistry which answer the question should always be rewarded - even if they are not mentioned in the marking scheme.

Page 3	Mark Scheme: Teachers' version IGCSE – October/November 2009	Syllabus of er 0620
1	argon or krypton or helium Accept xenon and radon even though percentages are very NOT hydrogen water and carbon dioxide	Syllabus 0620 / small [2]
	sulfur dioxide or lead compounds or CFCs or methane or p or unburnt hydrocarbons or ozone etc.	
	ncomplete combustion of a fossil fuel or a named fuel or a fuel that contains carbor	[1] n [1]
• •	at high temperature or inside engine nitrogen and oxygen (from the air) react	[1] [1]
• •	t changes carbon monoxide to carbon dioxide oxides of nitrogen to nitrogen	[1] [1]
	DR symbol or word equation of the type: 2NO + 2CO \rightarrow CO ₂ + N ₂	[2]
C	OR a redox explanation – the oxides of nitrogen oxidise dioxide, they are reduced to nitrogen	carbon monoxide to carbon [1] [1]
($\begin{array}{rcl} \textbf{OR} & 2\text{NO} & \rightarrow & \text{N}_2 + \text{O}_2 \\ & 2\text{CO} + \text{O}_2 & \rightarrow & 2\text{CO}_2 \end{array}$	[1] [1]
		[Total: 10]
a) pH < exam		[1] [1]
pH > exam NOT		[1] [1]
the ty	= 7 nple H ₂ O, CO, NO wo marks are not linked, mark each independently amphoteric oxides Be, A <i>l</i> , Zn, Pb, Sn etc.	[1] [1]
b) (i) క	shows both basic and acidic properties	[1]
	a named strong acid a named alkali	[1] [1]
		[Total: 9]

					www.xtrapapers.com
	Pa	ge 4		Mark Scheme: Teachers' version Syllab	us P er
				IGCSE – October/November 2009 0620	ASC .
3	(a)	(i)		t or roast or burn <u>in air</u> d both points for mark	ambrid
		(ii)	or 22	$P + C \rightarrow Zn + CO$ ZnO + C $\rightarrow 2Zn + CO_2$ alanced ONLY [1]	us er anacannundee com
	(b)	it lo zinc	ses e corre	ore reactive electrons and forms ions in preference to iron odes not iron c rusts	[1] [1] [1]
		the the	electi iron d	loses electrons and forms ions rons move on to the iron cannot be oxidised or it cannot rust or it cannot lose electrons correct Chemistry that includes the above ideas	[1] [1] [1]
	(c)	(i)		atoms change into ions, (the zinc dissolves) per(II) ions change into atoms, (becomes plated with copper)	[1] [1]
		(ii)	ions elect	trons	[1] [1]
					[Total: 10]
4	(a)	or diff		$M_{\rm r}$ or ozone molecules heavier than oxygen molecules	[1]
				ent densities or oxygen molecules move faster than ozone molec /gen is lighter or ozone heavier	ules [1]
				ional distillation e different boiling points	[1] [1]
	(b)	(i)		n colourless (solution) rown (solution)	[1] [1]
		(ii)		ses electrons (to form iodine molecules) t be in terms of electron transfer NOT oxidation number	[1]
		(iii)		(electrons) are accepted by ozone is an electron acceptor	[1]

Page 5	Mark Scheme: Teachers' version	Syllabus of er
	IGCSE – October/November 2009	0620
	correct structural skeleton COND 4bp around both carbon atoms 2bp and 2nbp around sulfur atom NOTE marks 2 and 3 can only be awarded if mark 1 has b	Syllabus 0620 Deen scored
	water carbon dioxide sulfur dioxide all three any two [1] Accept correct formulae	[2]
		[Total: 11]
	strong hard light or low density high melting point or high fixed points Accept high strength to weight ratio for [2] it includes marks 1 and 3	
;	any THREE	[3]
• • •	silicon four	[1] [1]
each each looks "tetra	ram to include: n germanium atom bonded 4 oxygen atoms n oxygen to 2 germanium atoms s or stated to be tetrahedral ahedral" scores mark even if diagram does not look tetrahe pendent marking of three points	[1] [1] [1]
(c) (i) :	structural formula of Ge_4H_{10} all bonds shown	[1]
	germanium(IV) oxide water	[1] [1]
		[Total: 11]

Page 6	Mark Scheme: Teachers' version	Syllabus er
	IGCSE – October/November 2009	0620
	burn sulfur in air or oxygen or heat a metal sulfide in air	ambrid
	bleach for wood pulp/cloth/straw or preserve food or sterilisin or making wine or fumigant or refrigerant Accept making paper	Syllabus 0620 ng [1]
. ,	vanadium(V) oxide accept vanadium oxide or V ₂ O ₅ or vanadium pentoxide oxidation state not essential but if given it has to be (V)	[1]
(iv)	rate too slow or rate not economic	[1]
(v)	reaction too violent or forms a mist	[1]
	add water to yellow powder or to anhydrous salt it would go green	[1] [1]
	change from purple or pink to colourless NOT clear	[1] [1]
(iii)	reacts with <u>oxygen</u> in air	[1]
num mas mas num volu	ber of moles of FeSO ₄ used = $9.12/152 = 0.06$ ber of moles of Fe ₂ O ₃ formed = 0.03^* s of one mole of Fe ₂ O ₃ = 160 g s of iron(III) oxide formed = $0.03 \times 160 = 4.8 \text{ g}$ ber of moles of SO ₃ formed = 0.03 me of sulfur trioxide formed = $0.03 \times 24 = 0.72 \text{ dm}^3$ ass of iron(III) oxide greater than 9.12 g , then only marks 1 an	[1] [1] [1] [1] [1] [1]

Apply **ecf** to number of moles of $Fe_2O_3^*$ when calculating volume of sulfur trioxide. Do not apply **ecf** to integers

[Total: 16]

Page 7	Mark Scheme: Teachers' version	Syllabus Syllabus	r
	IGCSE – October/November 2009	0620	
(a) (i) hea cat	at alyst	Cal	abrid
alk	equation that gives: ene + alkane alkene + alkene + hydrogen	Syllabus 0620	[1]
a c	orrect and balanced equation for the cracking of decane,		[1]
(iii) wa	ter or steam		[1]
	$H_9OH + 6O_2 \rightarrow 4CO_2 + 5H_2O$ nly error is balancing the oxygen atoms		[2] [1]
	anol + methanoic acid \rightarrow butyl methanoate + water rect products or reactants ONLY		[2] [1]
acc per	rect structural formulae [1] each cept either propanol and –OH in alcohol and acid nalise once for CH_3 type diagrams r either C_3H_8O or $C_3H_6O_2$ [0]		[2]
(ii) to a	conserve petroleum or reduce greenhouse effect		[1]
(d) have sa	ame boiling point		[1]
		[Total	: 13]