www.trapapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 32 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

www.xtrapapers.com

Page 2	Mark Scheme: Teachers' version	Syllabus	er
	IGCSE – October/November 2009	0620	900

GENERAL INSTRUCTIONS FOR MARKING

- Error carried forward may be allowed in calculations. This will be discussed in the scheme. This is not applied when the candidate has inserted incorrect integers or when answer is physically impossible.
- COND the award of this/these mark(s) is conditional upon a previous mark being awarded.
 Example Is the reaction exothermic or endothermic? Give a reason for your choice.
 Mark scheme exothermic [1]

COND a correct reason given [1]. This mark can only be awarded if the candidate has recognised that the reaction is exothermic.

- When the name of a chemical is demanded by the question, a **correct** formula is usually acceptable. When the formula is asked for, the name is not acceptable.
- When a word equation is required a **correct** symbol equation is usually acceptable. If an equation is requested then a word equation is not usually acceptable.
- An incorrectly written symbol, e.g. NA **or** CL, should be penalised once in a question.
- In the mark scheme if a word **or** phrase is underlined it (**or** an equivalent) is required for the award of the mark.

(.....) is used to denote material that is not specifically required.

- OR designates alternative and independent ways of gaining the marks for the question.
 or indicates different ways of gaining the same mark.
- Unusual responses which include correct Chemistry which answer the question should always be rewarded even if they are not mentioned in the marking scheme.

rapapers.com

[Total: 10]

[Total: 9]

Page 3	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2009	0620

- 1 (a) (i) argon or krypton or helium Accept xenon and radon even though percentages are very small **NOT** hydrogen
 - (ii) water and carbon dioxide

example

- (b) (i) carbon monoxide or lead compounds or CFCs or methane or particulates or unburnt hydrocarbons or ozone [1]
 - (ii) burn a fossil fuel [1] that contains sulfur [1]
 - (iii) at high temperature or inside engine [1] nitrogen and oxygen (from the air) react [1]
- (c) liquid air [1] [1] fractional distillation
- 2 (a) pH < 7[1] [1]
 - pH > 7[1] [1] example

NOT amphoteric oxides Be, A*l*, Zn, Pb, Sn etc.

need both points for mark

pH = 7[1] example H₂O, CO, NO [1]

the two marks are not linked, mark each independently **NOT** amphoteric oxides Be, Al, Zn, Pb, Sn etc.

- (b) (i) shows both basic and acidic properties [1]
 - (ii) acidic reacts with sodium hydroxide only [1] amphoteric reacts with both reagents [1]
 - OR only amphoteric oxide reacts with hydrochloric acid [2]

3 (a) (i) heat/roast/burn in air [1]

(ii) $ZnO + C \rightarrow Zn + CO$ [2] or $2ZnO + C \rightarrow 2Zn + CO_2$ unbalanced ONLY [1]

www.xtrapapers.com

[Total: 11]

	Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	er
		J -	IGCSE – October/November 2009	0620	No.
	(b)	it lo zind	c is more reactive oses electrons and forms ions in preference to iron c corrodes not iron T zinc rusts		Papa Cambridge
		the the	zinc loses electrons and forms ions electrons move on to the iron iron cannot be oxidised or it cannot rust or it cannot lose electrons correct Chemistry that includes the above ideas		[1] [1] [1]
	(c)	(i)	zinc atoms change into ions, (the zinc dissolves) copper(II) ions change into atoms, (becomes plated with cop	oper)	[1] [1]
		(ii)	ions electrons		[1] [1]
					[Total: 10]
4	(a) diffusion			[1]	
	different M_r or ozone molecules heavier than oxygen molecules or different densities or oxygen molecules move faster than ozone molecules NOT oxygen is lighter or ozone heavier				[1]
			t fractional distillation by have different boiling points		[1] [1]
	(b)	(i)	from colourless (solution) to brown (solution)		[1] [1]
		(ii)	I ⁻ loses electrons (it is oxidised)		[1]
	((iii)	they are accepted by ozone or ozone is an electron acceptor		[1]
	(c)	(i)	water carbon dioxide sulfur dioxide all three any two [1]		[2]
		(ii)	correct structural skeleton COND 4bp around both carbon atoms 2bp and 2nbp around sulfur atom		[1] [1] [1]

www.xtrapapers.com

	Page 5		5	Mark Scheme: Teachers' version	Syllabus	2.0 er
		.90 0		IGCSE – October/November 2009	0620	abo.
5	(a)	(i)	hard light high Acc it inc	<u> </u>		A. Patra Cambridge
		(ii)	diag eithe "tetra	ram 1 four silicons around one carbon ram 2 four carbons around one silicon er diagram looks or stated to be tetrahedral ahedral" scores mark even if diagram does not look tet pendent marking of three points	rahedral	[1] [1] [1]
	(b)	eac	h ger	to include manium atom bonded 4 oxygen atoms gen to 2 germanium atoms		[1] [1]
	(c)	(i)	struc	ctural formula of Ge₃H ₈ all bonds shown		[1]
		(ii)	gern wate	nanium oxide er		[1] [1]
						[Total: 11]
6	(a)	(i)		or Texas or Louisiana, Japan anoes, natural gas, petroleum		[1]
		(ii)	or m	ich for wood pulp/cloth/straw or preserve food or sterili naking wine or fumigant or refrigerant ept making paper	sing	[1]
		(iii)	or V	adium(V) oxide or vanadium oxide or vanadium pentox $_2\mathrm{O}_5$ oxidation state not essential but if given has to be (V)	iide	[1]
		(iv)	rate	too slow or rate not economic		[1]
		(v)	reac	ction too violent or forms a mist		[1]
	(b)	(i)		water to yellow powder or anhydrous salt ould go green		[1] [1]
		(ii)		nge from purple or pink plourless NOT clear		[1] [1]
		(iii)	reac	ets with <u>oxygen</u> in air		[1]

1.			
MXX/XX	ytra	nane	rs.con
	THE CITY	papo	0.0011

Page 6	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2009	0620

(c) number of moles of FeSO₄ used = $12.16/152 = 0.08^*$ number of moles of Fe₂O₃ formed = 0.04 mass of one mole of Fe₂O₃ = 160 g mass of iron(III) oxide formed = $0.04 \times 160 = 6.4 \text{ g}$ number of moles of gases formed = $0.08 \times 24 = 1.92 \text{ dm}^3$

1 COM

If mass of iron(III) oxide greater than 12 g, then only marks 1 and 2 available

Apply \mathbf{ecf} to number of moles of $\mathrm{FeSO_4}^*$ when calculating volume of sulfur trioxide. Do not apply \mathbf{ecf} to integers

[Total: 16]

- 7 (a) (i) heat [1] catalyst
 - (ii) equation that gives:
 alkene + alkane or alkene + alkene + hydrogen

 [1]

a correct and balanced equation for the cracking of decane, C₁₀H₂₂ but not but-1-ene [1]

- (iii) water **or** steam [1]
- (b) (i) $C_4H_9OH + 6O_2 \rightarrow 4CO_2 + 5H_2O$ [2] If only error is balancing the oxygen atoms [1]
 - (ii) butanol + propanoic acid → butyl propanoate + water correct products **or** reactants ONLY [1]
- (c) (i) correct structural formulae [1] each penalise once for CH₃ type diagrams For C₃H₈O [0]
 - (ii) to conserve petroleum **or** reduce greenhouse effect [1]
- (d) have same boiling point [1]

[Total: 13]