UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page	e 2							
			IGCSE – May/June 2010	0620	31				
1	(i)	sulfur			[1]				
	(ii)	iodine			[1]				
	(iii)	copper	ignore (II)		[1]				
	(iv)	calcium	1		[1]				
	(v)	helium	<u>,</u>		[1]				
			me of a compound correct symbols						
2	(i)		nethane		[1]				
		move s	liggest molecular mass / biggest mass of one mole / lowest / heaviest molecule / highest density	its molecules	[1]				
		ignore	accept atomic mass if correct numerical value given ignore it is the heaviest (gas) / biggest molecule						
			accept particles or molecules not atoms						
	(ii)	carbon not me	dioxide / calcium carbonate		[1]				
		water	n chloride / brine / seawater		[1] [1]				
	(111)	chlorine			[י] [1]				
	(11)	not chl	e orine water ght / UV / heat / high temperature if numerical value	aivon chout	[']				
			/ lead tetraethyl	- given about	[1]				
	(i./)		and nitrogen (in air)		[4]				
	(17)	not fro	[1]						
		• • •	at high temperatures / lightning / in engine mbustion or exhaust, negates mark 2		[1]				
	(v)	$2O_3 \rightarrow$			[2]				
		not bal	anced = [1]						
3	(a)	(i) bubl	bles / effervescence / hydrogen / gas pushes up / lif	ts metal	[1]				
	(s not react with <u>acid</u> / zinc and iron react with <u>acid</u> just unreactive		[1]				
	(b)	(i) with	copper / first experiment		[1]				
	((ii) cop	per acts as a <u>catalyst</u>		[1]				
	(c)		ller gradient rate is slower		[1]				
	(e final volume of hydrogen / same level (on graph)		[1]				
		Juj Sam	is manyolaric of hydrogen / same level (off graph)		נין				

Page 3			Mark Scheme: Teachers' version	Syllabus	Paper
		Ŭ	IGCSE – May/June 2010	0620	31
	(d)	incr fast not acc	nperature / heat rease temperature – reaction faster particles have more e ter / particles collide more frequently / more particles have t more excited cept arguments for a decrease in temperature wdered		
		gre gre any	ater surface area ater collision rate / more particles exposed (to acid) / two t concentration / light / catalyst / pressure		[2]
4	(a)	(i)	ethanol CH ₃ -CH ₂ -OH		[1] [1]
			propanoic acid CH_3 - CH_2 - $COOH$ independent marking, no ecf accept C_2H_5 not – HO		[1] [1]
		(ii)	type of compound – salt / sodium carboxylate / alkanoat not soap / sodium stearate etc use – soap / cleaning / detergent	е	[1] [1]
		(iii)	terylene / PET / Dacron / diolen / mylar / crimplene		[1]
	(b)	(i)	polyamide / amide / peptide / polypeptide		[1]
		(ii)	correct amide linkage <u>NHCO then CONH</u> cond to mark 1, 2 monomers (different shading in box) cond continuation (to ONE correct linkage)		[1] [1] [1]
			OR nylon 6 only one linkage – NHCO cond only one monomer cond continuation (to correct linkage)		[1] [1] [1]
		(iii)	use locating agent measure distance travelled by sample / travelled by solv cond this is $R_f = 0.5$ for mark 3, either mark 1 or mark 2 must be awarded	ent front	[1] [1] [1]
			accept run a chromatogram of glycine [1] compare with sample same position [1] max [2]		

Page 4		I	Mark Scheme: Teachers' version	Syllabus	Paper	
				IGCSE – May/June 2010	0620	31
5	(a)	(i)		romolecular / giant covalent / giant atomic toms held in position / in tetrahedral structure / to fo	ur other carbon	[1]
				ns / <u>all</u> strong bonds		[1]
		(ii)	-	ellery / drilling / cutting / engraving / cutting edges in k first use offered	scalpels	[1]
		(iii)	laye	r structure / sheets		[1]
				ecules / ions in layers = [0] rs can slide (over each other)		[1]
			-			
		(iv)		cant / pencils / electrodes k first use offered		[1]
	(1-)		1 a b			[4]
	(b)	(1)		etween carbon and oxygens n-bonding pairs on both oxygens		[1] [1]
				d correct coding – only scored if marks 1 and 2 awa ore O_2 in atom	irded	[1]
		(ii)	40 a	around each Si		[1]
		. ,		around each O t refer to diagram not valencies or electron distribut	tions	[1]
			mus			
		(iii)	SiO ₂	has higher mp or bp is a solid, CO₂ is a gas (at rtp) on both are solids) then SiO₂ is harder		
			has	higher density		[2]
				insoluble, CO ₂ soluble two , comparison needed		[2]
6	(a)	rate	<u>es</u> equ	ual		[1]
•	()	con	centr	ations do not change / macroscopic properties rema mounts do not change	ain constant	[1]
		uoo				
	(b)		other			[1]
		con	id fav	oured by high temperatures		[1]
	(c)	(i)		e to left		[1]
				d bigger volume / more moles etc ot insist on "gas"		[1]
		(ii)		yellow solid / more brown liquid		[1]
			acce	ept yellow to brown / less solid more liquid / goes br	own	

Page 5		ge 5		Mark Scheme: Teachers' version					Syllabus	Paper				
		IGCSE – May/June 2010 0620					31							
	(a)	 a transition element has more than one oxidation state or valency accept different oxidation states 											[1	
	(b)			ving oxyg the back						nt				[1 [1
	(c)	acc	ept a	number ccepts e r given m	lectroi	ns or a	• •	,	lectrons					[1
	(d)	low density / lightweight / light propellers / fittings on ships / inert anodes in electrolysis / hip replac		nin renlacen	nonte /		[1							
		•		-		•				•	equipment			[
	(e)	(i)	perc	entage o	f oxyg	en =	31.6%							[
		(ii)	calc	ulate the	numb	er of n	noles of	atom	s for eac	h eleme	ent			
			num	ber of mo	oles of	Ti = 3	81.6/48	= 0.66	;					
				ber of mo correct f				= 1.98	accept	2				[
		(iii)	the s	implest <u>v</u>	whole	numb	<u>er ratio</u>	for mo	oles of at	oms:				
			Fe 1	: Ti : 1	O 3									[
		(iv)	mus	ula is Fe t be whol t ecf thro	e num	bers f			incelled i	number	rs from (iii)			[

Pa	age 6	Mark Scheme: Teachers' version	Syllabus	Paper
		IGCSE – May/June 2010	0620	31
3 (a)	same c same fu physica commo consec any two mark fi	eneral formula hemical properties unctional group al properties vary in predictable way in methods of preparation utive members differ by CH ₂ o i rst two others unless it contradicts a point which has be	een awarded a mark	[2
(b)) (i) 2H	COOH + CaCO ₃ \rightarrow Ca(HCOO) ₂ + CO ₂ + H ₂ O t balanced = [1]		[2
	• •	c + methanoic acid \rightarrow zinc methanoate + hydro for each product	gen	[2
	(iii) pro	otected by <u>oxide</u> layer		[1
(c)	C_2H_4O	ic acid H ₂ -CH ₂ -COOH / C ₄ H ₈ O ₂ / C ₃ H ₇ COOH / C ₄ H ₇ OOI cf to molecular formula	Н	[1 [1 [1