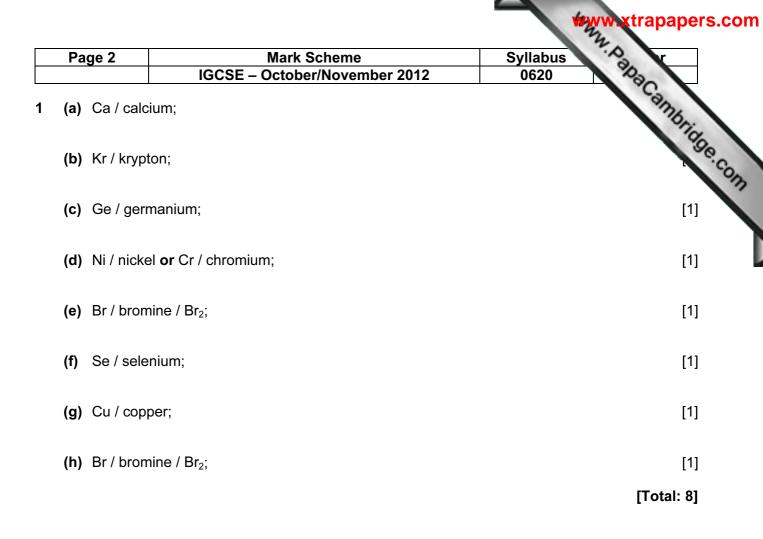
CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Www.strapapers.com MARK SCHEME for the October/November 2012 series

0620 CHEMISTRY

0620/33


Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

2 (a) (i) manufacture of plastics / (solvents for) dry cleaning / metal degreasing / textiles / agrochemicals / pharmaceuticals / insecticides / dyestuffs / household cleaning products / bleach / water treatment / swimming pools / kill bacteria or germs or microorganisms or pathogens / sterilisation / disinfectants; [1]
(ii) electric light bulbs / fluorescent tubes / (inert gas shield for) arc welding /

production of titanium / inert atmosphere / car headlights / food packaging;

- (iii) (manufacture of) polyethene / polyvinyl chloride (PVC) / making polymers / (to prepare) epoxyethane (which is used in the manufacture of detergents / (to make) ethylene glycol (which is used to prepare Terylene) / (to make) antifreeze / or making ethanol (accept making alcohol) / ripening fruits;
- (iv) (making) steel / (oxy-acetylene) welding / cutting of metals / medical or diving or (oxygen tanks in) hospitals / astronauts / (deep sea) diving / fire fighters;

[1]

[1]

(b) liquid air;[1]fractional distillation;[1]

[Total: 6]

Page 3		Mark Scheme Syllabus	r		
	.go o	IGCSE – October/November 2012 0620			
(a)	ge 3 Mark Scheme Syllabus IGCSE – October/November 2012 0620 explanation of evaporation e.g. particles (or molecules) with a lot of energy leave the liquid / bromine particles break free from each other / forces or bonds between bromine molecules broken / molecules (in liquid) have weak forces holding them together / weak intermolecular forces / Van der Waals forces between molecules (don't have to be stated as weak) / (weak intermolecular forces alone scores this mark); allow: particles (or molecules) of bromine escape from liquid diffusion / diffuse / movement of particles; explanation of diffusion involving qualified movement of molecules / particles i.e. random movement of molecules / particles move in all directions;				
(b)	hyd acc pres air l air c	nore dense / heavier / high <u>er</u> <i>M_r</i> <u>than hydrogen;</u> rogen diffuses fast <u>er</u> (than air diffuses out); ept: diffusion in is faster than out (without naming gases) ssure inside pot is great <u>er</u> (than outside); ess dense / light <u>er / lower</u> <i>M_r</i> <u>than carbon dioxide;</u> liffuses / moves fast <u>er</u> (than carbon dioxide); ept: diffusion out is faster than in (without naming gases)	[1 [1 [1 [1		
	pre	pressure inside pot less (than outside);			
	OR	ORA in both parts			
(a)	(i)	zinc mixed with an element(s) or metal(s) or non-metal;	[1		
	(ii)	galvanising / baths / coating steel (i.e. description of galvanising) / roofing / sacrificial protection / protection from rusting / electroplating / zinc plating / batteries;	[1		
	(iii)	(lattice) positive ions / cations / metal ions / sea of electrons / delocalised or free or mobile or moving electrons; attraction between positive ions and electrons; the layers (of ions) or particles can slide or slip or shift past each other;	[1 [1 [1		
	(iv)	different atom / ion / particle of different size; prevents (layers / atoms / ions / particles / molecules) moving / slipping / sliding / shifting;	[1 [1		
(b)	(i)	heat with carbon or coke or carbon monoxide;	[1		
	(ii)	ZnO + $H_2SO_4 \rightarrow ZnSO_4 + H_2O$ [1] for correct reactants [1] for correct products	[2		

Page 4	Mark Scheme	Syllabus Syllabus			
	IGCSE – October/November 2012	0620			
Page 4 Mark Scheme Syllabus IGCSE - October/November 2012 0620 (iii) zinc (not: ions) more reactive than silver and lead; zinc displaces both metals / silver and lead produced / ions become atoms / zinc reduces silver ions and lead ions; (silver and lead) can be removed by filtering / centrifugation / decanting; an ionic equation; i.e.					
Zn + 2	ic equation; i.e. 2 Ag ⁺ → Zn ²⁺ + 2Ag or Zn + Pb ²⁺ → Zn ²⁺ + Pb : any two correct half equations	[1			
zinc d oxyge	de labelled carbon / zinc / platinum; eposited at cathode; n formed (at anode); rolyte becomes) sulfuric acid / remaining solution conta	[1 [1 [1 [1] ains H⁺ and SO₄²-;			
		[Total: 18			
	dd bromine water / bromine / aqueous bromine; plourless;	[1 [1			
	r add potassium manganate(VII) / permanganate; (igr plourless;	nore acid or alkali) [1 [1			
ir	dd metal / carbonate / insoluble base / strong alkali dicator / use pH meter; OND: on reagent	allow: ammonia with an [1			
	netal - hydrogen given off / metal dissolves / efferve urning splint pops;	escence / gas given off /			
	arbonate - carbon dioxide given off / effervescence / ilky;	gas given off / limewater			
ir	soluble base - solution formed / dissolves;				
а	kali - use of indicator to show neutralisation / tempera	ture increase;			
р	H meter - gives pH less than 7	[1			
correc	propenoate; st SF all bonds shown;;	[1 [2			

correct SF all bonds shown;; allow: [1] for correct displayed ester linkage

Paç	ge 5	Mark Scheme IGCSE – October/November 20	Syllabus r
(c)	• •	number of atoms of each element;	Syllabus 12 0620 Combined [1]
	(ii)	in one molecule; 2:	Hig
		C=C	[1]
	(iv)	HOOC(CH ₃)C=C(CH ₃)COOH	[Total: 12]
(a)		Zn + 2HC l → ZnC l_2 + H ₂ not balanced = [1]	[2]
	(ii)	3 bps and 1 nbp around As; 1 bp each hydrogen atom;	[1] [1]
(b)	(i)	(97.4/75 =) 1.3 and (2.6/1 =) 2.6; empirical formula AsH ₂ ; note: correct formula with no working = [1]	[1] [1]
	(ii)	As ₂ H ₄ ;	[1]
	(iii)	H ₂ As–AsH ₂ / AsH ₂ –AsH ₂ ;	[1]
(c)	(i)	amide / peptide;	[1]
	(ii)	named strong acid / alkali; allow: HC <i>l</i> / enzymes	[1]
	(iii)	amino acid; allow: peptides	[1]
(d)	(i)	Cu and As have more than one oxidation sta	te / valency; [1]
	(ii)	$3Cu^{2+} + 2AsO_4^{3-} \rightarrow Cu_3(AsO_4)_2$ either side correct = [1]	[2]
			[Total: 14]

Page 6		Mark Scheme Syllabus	V.
		IGCSE – October/November 2012 0620	
(a)	(ma	king) fertilisers / nitric acid / nylon / refrigeration / explosives / cleaning products	mbri
(b)	wat	Mark Scheme Syllabus IGCSE – October/November 2012 0620 king) fertilisers / nitric acid / nylon / refrigeration / explosives / cleaning products ne / named alkane; er / steam; t / catalyst;	[1] [1]
	sug	lectrolysis; gest suitable electrolyte; (allow: water) ^r ogen at cathode;	[1] [1] [1]
	alka	racking; ne / named alkane; t or catalyst	[1 [1 [1
(c)	-	five from: er; (rate)	[1
	mor	e collisions / molecules closer together / more particles per unit volume;	[1
		isions) more frequent / more often / more chance / more effective or successful sions / more collisions with Ea / increase rate of collisions;	[1
		er yield / moves (equilibrium) to RHS / more ammonia / to side of products / high sure favours the reaction with less moles;	[1
		moles / molecules / volume on RHS ORA (can be implied in previous ments)	[1
		pressure means lower temperature can be used to achieve comparable rate s saving energy);	[1
(d)	(i)	endothermic takes in / absorbs / uses / needs / gains energy / heat <u>and</u> exothermic gives out / loses energy / heat;	[1
	(ii)	2328 (ignore + or –) / 6 × 388 (not evaluated);	[1
		944 + 1308 / 2252 and endothermic and exothermic in table;	[1
		2328>2252 or (–) 76kJ;	[1
		or energy of products / RHS > reactants / LHS or energy needed to break bonds < energy given out on formation of bonds. [Tot	al: 13