CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

BBCAMRRIDGE

www.xtrapapers.con

	Page 2		Mark Scheme	Syllabus \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			IGCSE – May/June 2013	0620
1	(a) (i)	by c	nent not be broken into anything simpler hemical means made up of one type of atom only	Syllabus 7 day 7 0620
	(ii)	two	pound or more different elements mically bonded together	[1] [1]
	(iii)	mixt two	ure or more substances not chemically joined together	[1]
	(b) (i)	mixt	ure	[1]
	(ii)	com	pound	[1]
	(iii)	elem	nent	[1]
	(c) cor	nductiv	vity (of heat or electricity)	[1] [Total: 9]
				[rotali o]
2	(a) (i)	large	e / high surface area	[1]
		(betv	collision rate / collide more / many collisions ween oxygen molecules and aluminium atoms) faster collisions	[1]
	(ii)		centration actants decreases	[1] [1]
			v one mark ONLY for: eactants used up or amount of reactant decreases	
	(iii)	any	three of four from one strand:	

M1	increase in temperature			
M2	molecules move faster or	particles have more energy		
М3	higher collision rate			
M4	more successful collisions or	more particles have enough energy to react/ <i>E</i> _a		

[3]

(b) (i) flour or wood dust or coal dust or carbon or sugar

[1]

			-
Page 3	Mark Scheme	Syllabus	.03
	IGCSE – May/June 2013	0620	123

(ii) any three from:

(d) oxidation

COND increase in oxidation number

ACCEPT: electron loss

powder and larger pieces / different sized particles use suitable named solid, e.g. magnesium suitable named solution, e.g. named acid **or** copper sulfate(aq) result – powder reacts faster than larger pieces **NOT** Cu (with acid); K / Na with anything

[3] COM

3	(a)	(i) (ii)	cars, ships, bridges, construction, white goods, screws, nails, roofing, fencing, etc. e.g. stainless steel cooking utensils, surgical equipment, sinks or main use	[1] [1] [1]
	(b)	car CO add AL pho rea	w in oxygen bon dioxide <u>and</u> sulfur dioxide (escape as gases) ND on reaction with air / oxygen d calcium oxide / quicklime LOW calcium carbonate, limestone esphorus oxide or silicon oxide (are acidic) cts (with calcium oxide / CaCO ₃) form slag / calcium silicate	[1] [1] [1] [1]
4	(a)	(i) (ii)	any ambiguous formula, e.g. GeH_3 - GeH_2 - GeH_3 Ge_nH_{2n+2} NOT C instead of Ge	[1] [1]
	(b)	CO	rect formula ND 4bps around germanium atom ND 3nbps and 1bp around each chlorine atom	[1] [1]
	(c)	two	r oxygen atoms around each germanium atom germanium atoms around each oxygen atom ahedral	[1] [1] [1]

[1] [1]

www.xtrapapers.com

[1]

	uo I	0	
IGCSE – May/June 2013 062		2000	

- 5 (a) (i) any Group 1 metal ACCEPT: lithium
 - (ii) $2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$ PbO [1]COND balancing [1]

(iv) forward reaction is bond forming

- (iii) the metal in a (i) is more reactive than lead more reactive metals have more stable compounds

 OR has stronger (ionic) bonding [1]
- (b) (i) speed / rate of forward reaction = speed / rate of back reaction

 OR macroscopic properties do not change / constant (with time)
 - (ii) goes darker **OR** goes brown [1] **COND** lower pressure favours side with more moles [1] **COND** this is NO₂ side **OR** reactant side **OR** goes left [1]
 - (iii) exothermic [1]
 - low temperatures moves equilibrium to right / product side / towards N₂O₄ [1]
- 6 (a) (i) measure melting point NOT just heating pure sample would melt at 135 °C [1]
 OR impure would melt lower than 135 °C

low temperatures favour the exothermic reaction or

- (ii) $C_3H_4O_4$ [1]
- (iii) C₂H₄O₂ **OR** CH₃COOH [1] ethanoic **OR** acetic acid both marks are independent of each other
- (iv) ester NOT organic, covalent [1]
- (b) (i) malonic is a weaker acid/less dissociated

 OR sulfuric acid is a stronger acid/more dissociated

 NOT sulfuric acid is a strong acid

 [1]

www.xtrapapers.com

[1]

[1]

[Total: 16]

Page 5	Mark Scheme	Syllabus	.0
	IGCSE – May/June 2013	0620	100
			~

(ii) add piece of suitable metal, e.g. Mg ALLOW A*l*, Ca NOT K, Na, Cu sulfuric acid reacts faster OR malonic reacts slower

OR

as above add a piece of CaCO₃, if soluble carbonate then [1] only

OR measure electrical conductivity	
sulfuric acid is the better conductor	
OR malonic acid poor er conductor	
NOT culturis sold is a good conductor	

NOT sulfuric acid is a good conductor

(iii)
$$CH_2(COO)_2 Mg$$

 H_2 [2]

(iv)
$$K_2SO_4$$
 CO_2 and H_2O NOT H_2CO_3 [2]

alkenes contain at least one C=C double bond or they are unsaturated (hydrocarbons) or have the general formula C_nH_{2n} [1]

(b)
$$C_{20}H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$$
 [1]

(c) (i) any unambiguous structure of
$$BrCH_2CH_2Br$$
 [1]
NOT just $C_2H_4Br_2$

(iii)
$$(CH_3-CH_2-CH=CH_2) + H_2O [1] \rightarrow CH_3-CH_2-CH_2-CH_2OH [1]$$
 [2] **ALLOW** $CH_3-CHOH-CH_2-CH_3$ butene reacts with **water/steam** (to form butanol) **ONLY [1]**

(iv)
$$C_6H_{12} + H_2 \rightarrow C_6H_{14}$$
 [2] alkenes react with hydrogen [1] ONLY

(d) volume of oxygen used =
$$150 \, \text{cm}^3$$
 [1]

www.xtrapapers.com

Page 6	Mark Scheme	Syllabus	.0	V
	IGCSE – May/June 2013	0620	No.	

volume of carbon dioxide formed = $100\,\mathrm{cm}^3$ any equation of the combustion of an alkene e.g. $2C_5H_{10}$ + $15O_2$ \rightarrow $10CO_2$ + $10H_2O$ formulae **COND** balancing

[1] COM