CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

BBCAMRRIDGE

Pane 2		Maule Calacina	Cullabas	4.0	
Page 2		Mark Scheme IGCSE – May/June 2013	Syllabus 0620	8	
(a) (i)	acce	ned noble gas ept: any noble gas ept: symbol	3323	W. Papacambridg	
(ii)		/ CO ₂ names not: equations		[1]	
(b) (i)	oxyg at hi acce	[1] [1]			
(ii)	acce	il fuels / fuels which contain sulfur ept: named fossil fuel such as coal / oil / natural gas n / combust	5	[1] [1]	
(iii)	dam unav	two from: hage buildings / soil acidification / leaching from vailable / kill microbes / acidify lakes / kill fish / d vth / crop loss			
(c) (i)		gen reacts with copper orm copper oxide (which is black)		[1] [1]	
(ii)	temp	asure volume at room temperature / gas has peratures / volume of gas depends on temperatur t causes expansion (of gases) / ORA			
(iii)	no o	oxygen left or <u>all</u> the oxygen has reacted (with coppe	er)	[1]	
(iv)	39–4	40 cm ³ note: units required		[1]	
(a) B ³ pos	-	charge +		[1] [1]	
C 3	55 Zn			[1]	
D ¹ cha	⁶ ₈ O arge 2	<u>)_</u>		[1] [1]	
E 3	⁷⁰ Ga			[1]	
(b) nur	mber (of p = number of e		[1]	
nur	number of p > number of e				
nur	number of p < number of e				

1

2

www.xtrapapers.com

Page 3	Mark Scheme	Syllabus	3
	IGCSE – May/June 2013	0620	100
·	-		S

3 (a) (i) complete combustion / combustion in excess oxygen

of fuels containing carbon / fossil fuels / hydrocarbon (fuels)

produce carbon dioxide / increase percentage of CO2 in atmosphere

(ii) living things / cells / plants / animals / humans / micro-organisms [1]
 (oxidise / react with) oxygen and food / foodstuff / named foodstuff / carbohydrate / sugar / glucose [1]

produces carbon dioxide [1]

(b) (i) glucose or starch or carbohydrate [1]

oxygen [1]

(ii) light / sunlight / sun / UV [1]

chlorophyll **accept**: chloroplast [1]

4 (a) (i) first reaction

volume / moles / molecules of reactants and products are different [1]

second reaction

volume / moles / molecules of reactants and products are the same [1]

(ii) first reaction (forward) reaction is endothermic [1] second reaction (forward) reaction is exothermic [1]

(b) (i) $C_8H_{18} \rightarrow 2C_4H_8 + H_2$ [1]

(ii)
$$2H^{+} + 2e \rightarrow H_{2}$$
 [2]

or $2H_3O^+ + 2e \rightarrow H_2 + 2H_2O$

accept: -2e on right hand side accept: e-

note: not balanced = 1

(iii) chlorine / Cl_2 /

cond: water treatment / solvents / plastics / PVC / bleach / disinfectants / HC1 / kill bacteria / sterilising water / chlorination of water / swimming pools / pesticides / herbicides / insecticides / germicides / pharmaceuticals [1]

sodium hydroxide/NaOH [1]

cond: making soap / degreasing / making paper / detergents / bio-diesel / paint stripper / clearing drains / alumina from bauxite / oven cleaner / bleach [1]

[1]

Page 4	Mark Scheme	Syllabus	.0
	IGCSE – May/June 2013	0620	Age 1

- 5 (a) (i) does not decay or non-biodegradable or flexible or or easily moulded or low density / light / lightweight or waterproof / insoluble in water not corrode or durable
 - (ii) any two from: chlorine hydrogen chloride carbon monoxide

continuation shown

- (b) (i) CH_3 — $CH = CH_2$ [1] note: can be fully or semi-displayed, C = C must be shown

 (ii) correct repeat unit $-CH(C_6H_5)$ — CH_2 —
- (c) glucose two products (polymer and water) / condensation (polymerisation) / (small) molecules removed [1] phenylethene one product (polymer) / addition (polymerisation)
- 6 (a) (i) ions cannot move / no free ions in solid state ions can move / free ions in liquid state [1] note: ions can only move in liquid state = 2
 - (ii) reduce melting point / reduce energy costs / better conductor when dissolved in cryolite [1]
 - (iii) burns in oxygen / reacts with oxygen / oxidised by oxygen / forms carbon dioxide / forms carbon monoxide [1]
 - (iv) high melting point / inert / unreactive [1]
 - (b) protective / unreactive / resists / prevents corrosion / non-porous (layer) [1]
 - of (aluminium) oxide [1]
 - (c) (i) good conductor (of electricity) [1] low density / light / lightweight [1]
 - (ii) steel core (increased) strength / prevent sagging / to increase separation of pylons / support [1]

www.xtrapapers.com

	Page 5		Mark Scheme	Syllabus	
			IGCSE – May/June 2013	0620	
7	(a) (i)	C ₂ H	COOCH ₂ CH ₃ / CH ₃ CO ₂ CH ₂ CH ₃ / CH ₃ COOC ₂ H ₅ / C ₅ OOCCH ₃ / CH ₃ CH ₂ OOCCH ₃ not: –OCO– linkage e: formulae can be displayed or semi-displayed e: penalise sticks (i.e. any missing atoms)	Syllabus 0620 CH ₃ CO ₂ C ₂ H ₅ /	Spinde
	(ii)	buty	rl methanoate		[1]
	(b) (i)	fats	/ vegetable oils / triglycerides / lipids		[1]
	(ii)	two	correct ester linkages, e.g. –OOC / –O ₂ C and –COC	O / -CO ₂	[1]
			tents of the 'boxes' being C_6H_4 and C_2H_4 or CH_2CH_2 tinuation bonds at both ends		[1] [1]
	(c) (i)		nake colourless / invisible (spots) ble / coloured / seen / position made clear / indicate		[1] [1]
	(ii)		distance travelled by sample = R _f ance travelled by solvent (front)		[1]
	(iii)		uple 1 R_f = 0.20 to 0.24 tartaric (acid) uple 2 R_f = 0.44 to 0.48 malic (acid)		[1] [1]
8	(a) (i)	or the r or Avogortion (the atom or (the atom or the r or	number of particles which is equal to the number of mass in grams which contains the Avogadro's constagadro's constant or 6 to 6.023 × 10 ²³ of atoms icles amount of substance which has a mass equal to) it nic mass / relative molecular mass in grams amount of substance which has a volume equal to) ogadro's constant is the) number of particles / atoms ibstance number of carbon atoms in 12g of C(12). number of particles / molecules in 24 dm³ of a gas at	ant number of particles / ions / molecules / electron ts relative formula mass / relat 24 dm³ of a gas at RTP s / ions / molecules in one mole	tive [1] e of
		6 to	6.023×10^{23} (particles / atoms / ions / molecules / e	lectrons)	[1]
	(b) CH	4 and	I SO ₂		[1]

 $2/16 = 1/8 \text{ or } 0.125 \text{ moles of CH}_4 \text{ AND } 8/64 = 1/8 \text{ or } 0.125 \text{ moles of SO}_2$

[1]

www.xtrapapers.com

Page 6	Mark Scheme	Syllabus	.0	V
	IGCSE – May/June 2013	0620	do	-

- (c) (i) 4.8/40 = 0.12 moles of Ca 3.6/18 = 0.2 moles of H₂O **both** correct
 - (ii) Ca is in excess (no mark) (because 0.12 moles of Ca need) 0.24 moles / 4.32 g of F there is not enough / there are 0.2 moles / 3.6 g of H₂O Ca is in excess (no mark) (because 0.2 moles / 3.6g of water will react with) 0.1moles/4.0g of Ca [1] there is more than that / there are 0.12 moles / 4.8 g of Ca [1] or Ca is in excess (no mark) because the mole ratio Ca:H₂O is 3:5 / mass ratio 4:3 [1] which is bigger than the required mole ratio of 1:2 / mass ratio 10:9 [1] Ca is in excess (no mark) because the mole ratio H₂O:Ca is 5:3 / mass ratio 3:4 [1] which is smaller than the required mole ratio of 2:1 / mass ratio 9:10 [1] (iii) $0.02 \times 40 = 0.8$ (g) [1]