

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY

Paper 1 Multiple Choice

Www.PapaCambridge.com 0620/11 May/June 2013

w xtrapapers.com

45 Minutes

Additional Materials:	Multiple Choice Answer Sheet
	Soft clean eraser
	Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

DO NOT WRITE IN ANY BARCODES.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page 16. Electronic calculators may be used.

This document consists of 15 printed pages and 1 blank page.

- Www.xtrapapers.com 2

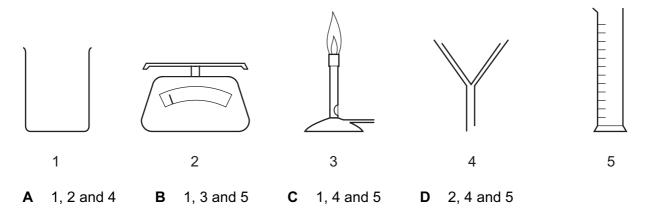
Which row describes the water particles in the air above the cup compared with the water particles in the cup?

	moving faster	closer together
Α	\checkmark	1
в	\checkmark	x
С	×	1
D	×	x

The diagram shows a cup of tea.

1

- 2 Crystals of sodium chloride were prepared by the following method.
 - 25.0 cm³ of dilute hydrochloric acid was accurately measured into a conical flask. 1
 - 2 Aqueous sodium hydroxide was added until the solution was neutral. The volume of sodium hydroxide added was measured.
 - The solution was evaporated and the crystals washed with approximately 15 cm³ of 3 water.

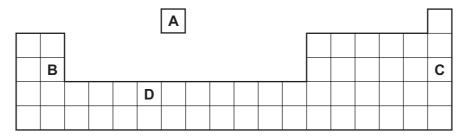

Which row shows the pieces of apparatus used to measure the 25.0 cm³ of hydrochloric acid, the volume of aqueous sodium hydroxide and the 15 cm³ of water?

	25.0 cm ³ of hydrochloric acid accurately	the volume of aqueous sodium hydroxide added	15 cm ³ of water approximately
Α	burette	pipette	measuring cylinder
в	measuring cylinder	burette	pipette
С	pipette	burette	measuring cylinder
D	pipette	measuring cylinder	burette

3 Lead iodide is insoluble in water.

Lead iodide is made by adding aqueous lead nitrate to aqueous potassium iodide.

Www.PapaCambridge.com Which pieces of apparatus are needed to obtain solid lead iodide from 20 cm³ of aqueous le nitrate?



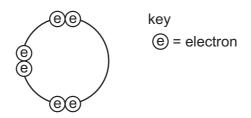
Element X is represented by $^{27}_{13}$ X. 4

Which statement about element X is correct?

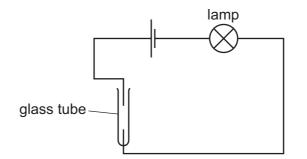
- An atom of X contains 13 protons and 13 neutrons. Α
- An atom of X contains 27 protons and 13 electrons. В
- X forms an ion by gaining electrons. С
- D X is placed in Group III of the Periodic Table.
- 5 The positions of four elements are shown on the outline of the Periodic Table.

Which element forms a coloured oxide?

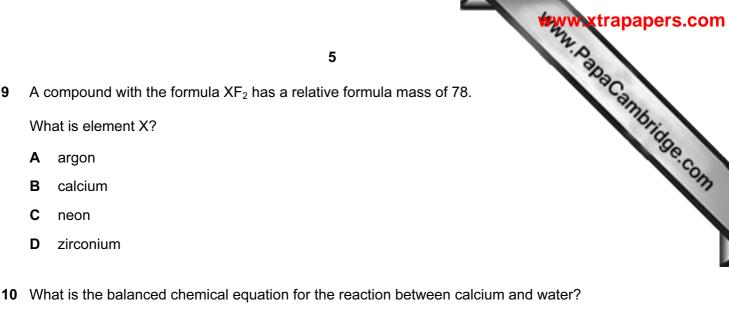
© UCLES 2013


3

6 For which substance is the type of bonding **not** correct?

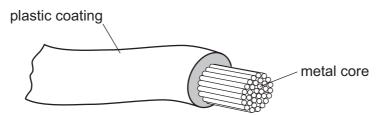

	substance	type of bonding		
	substance	ionic	covalent	metallic
Α	chlorine		1	
в	potassium bromide	1		
С	sodium			1
D	sodium chloride		\checkmark	

7 Element X has six electrons in its outer shell.


How could the element react?

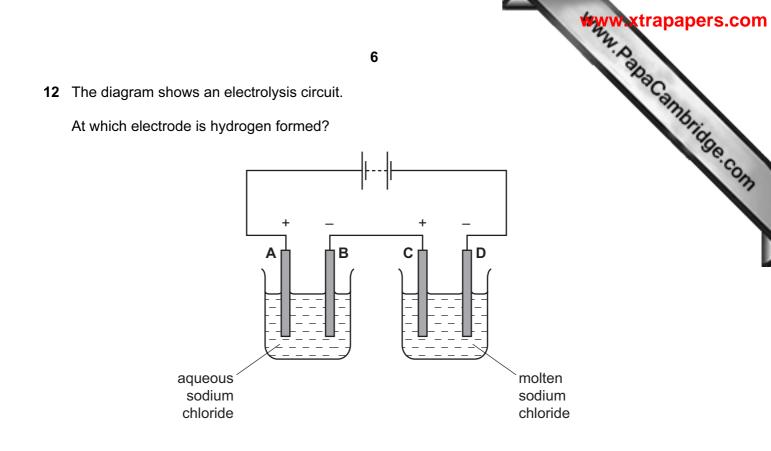
- A by gaining two electrons to form a positive ion
- B by losing six electrons to form a negative ion
- **C** by sharing two electrons with two electrons from another element to form two covalent bonds
- D by sharing two electrons with two electrons from another element to form four covalent bonds
- 8 The diagram shows an incomplete circuit.

Which substance causes the lamp to light when added to the glass tube?


- A aqueous sodium chloride
- B aqueous sugar
- C solid sodium chloride
- D solid sugar

 $\textbf{A} \quad \text{Ca} \ + \ \text{H}_2\text{O} \ \rightarrow \ \text{Ca}\text{OH} \quad \ + \ \text{H}_2$ **B** Ca + $H_2O \rightarrow Ca(OH)_2 + H_2$ **C** Ca + $2H_2O \rightarrow$ CaOH + H_2 **D** Ca + $2H_2O \rightarrow$ Ca(OH)₂ + H₂

9


11 The diagram shows an electrical cable.

Which statement about the substances used is correct?

- Α The coating is plastic because it conducts electricity well.
- В The core is copper because it conducts electricity well.
- С The core is copper because it is cheap and strong.
- D The core is iron because it is cheap and strong.

13 Some white anhydrous copper(II) sulfate powder is put into a beaker of water and stirred.

What would show that the process was exothermic?

- **A** A blue solution is formed.
- B The beaker feels cooler.
- C The beaker feels warmer.
- **D** The powder dissolves in the water.
- 14 Which substance does not require oxygen in order to produce energy?
 - A coal
 - B hydrogen
 - C natural gas
 - **D** ²³⁵U

www.papacambridge.com 15 The equation shows the formation of anhydrous copper(II) sulfate from hydrate sulfate.

 $CuSO_{4.}5H_{2}O \rightleftharpoons CuSO_{4} + 5H_{2}O$

Statements 1, 2 and 3 refer to this reaction.

- 1 Hydrated copper(II) sulfate is reduced to anhydrous copper(II) sulfate.
- 2 The (II) in the name copper(II) sulfate refers to the oxidation state of the metal.
- The reaction is reversible. 3

Which statements are correct?

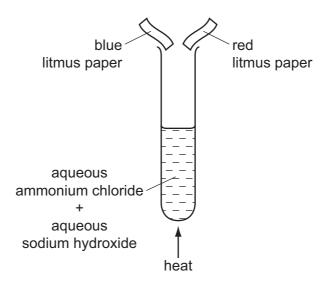
C 2 and 3 A 1 only **B** 1 and 2 D 3 only

16 Calcium carbonate reacts with hydrochloric acid to form carbon dioxide.

Which changes would slow this reaction down?

- 1 decreasing the concentration of hydrochloric acid
- 2 decreasing the particle size of calcium carbonate
- 3 decreasing the temperature
- **B** 1 and 3 only 2 and 3 only **D** 1, 2 and 3 Α 1 and 2 only С
- **17** The equations represent redox reactions.

In which equation is the underlined substance acting as a reducing agent?


- $3\underline{CO}$ + Fe₂O₃ \rightarrow 2Fe + 3CO₂ Α
- **B** <u>CO₂</u> + C \rightarrow 2CO
- **C** <u>CuO</u> + H₂ \rightarrow Cu + H₂O
- **D** <u>CaO</u> + H₂O \rightarrow Ca(OH)₂
- **18** Ant stings hurt because of the methanoic acid produced by the ant.

Which substance could, most safely, be used to neutralise the acid?

	substance	рН
Α	baking soda	8
В	car battery acid	1
С	lemon juice	3
D	oven cleaner	14

- Www.xtrapapers.com 8 **19** The diagram shows one period of the Periodic Table. F В С Ν 0 Li Be Ne Which two elements form acidic oxides? Α carbon and lithium В carbon and neon
 - C carbon and nitrogen
 - D nitrogen and neon
 - 20 The diagram shows an experiment.

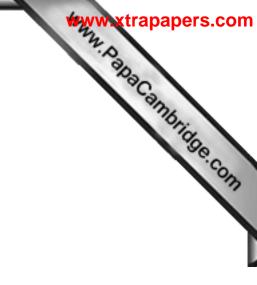
What happens to the pieces of litmus paper?

	blue litmus paper	red litmus paper
Α	changes colour	changes colour
в	changes colour	no colour change
С	no colour change	changes colour
D	no colour change	no colour change

rs in act annumbridge com 21 Two indicators, bromophenol blue and Congo red, show the following colours in act and in alkaline solutions.

indicator	acid	alkali
bromophenol blue	yellow	blue
Congo red	violet	red

A few drops of each indicator are added to separate samples of a solution of pH 2.


What are the colours of the indicators in this solution?

	in a solution of pH 2		
	bromophenol blue is Congo red is		
Α	blue	red	
в	blue	violet	
С	yellow	red	
D	yellow	violet	

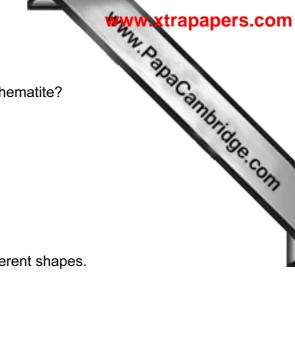
- 22 Which property of elements increases across a period of the Periodic Table?
 - A metallic character
 - В number of electron shells
 - C number of outer shell electrons
 - D tendency to form positive ions
- 23 Which element is a transition metal?

	colour of chloride	melting point of element/°C
Α	white	113
В	white	1495
С	yellow	113
D	yellow	1495

24 Fluorine is at the top of Group VII in the Periodic Table.

Which row shows the properties of fluorine?

	colour	state at room temperature	reaction with aqueous potassium iodide
Α	brown	gas	no reaction
в	brown	liquid	iodine displaced
С	yellow	gas	iodine displaced
D	yellow	liquid	no reaction


25 Group I metals are also known as the Alkali Metals.

Which statement about the metals in Group I is not correct?

- **A** In their reactions they lose electrons.
- **B** Their atoms all have one electron in their outer shell.
- **C** They form +1 ions in their reactions with non-metals.
- **D** They form covalent compounds by sharing electrons.
- 26 Which element is a metal?

	charge on element ion	electrical conductivity
Α	negative	low
в	positive	high
С	negative	high
D	positive	low

- 27 Which property makes aluminium ideal for making food containers?
 - A conducts electricity
 - B conducts heat
 - C mechanical strength
 - D resistance to corrosion

- 28 Which substance is not involved in the extraction of iron from hematite?
 - A carbon
 - B carbon monoxide
 - C calcium carbonate
 - D nitrogen
- 29 Pure metals conduct electricity and can be hammered into different shapes.

Why are metals sometimes used as alloys?

- A Alloys are cheaper than the metals they are made from.
- B Alloys are easier to hammer into different shapes.
- **C** Alloys are harder and keep their shape better.
- D Alloys conduct electricity better.
- 30 Below are some metals in decreasing order of reactivity.

magnesium zinc iron copper

Titanium reacts with acid and cannot be extracted from its ore by heating with carbon.

Where should titanium be placed in this list?

- A below copper
- B between iron and copper
- C between magnesium and zinc
- D between zinc and iron
- 31 Water has been contaminated with sea-water.

Which substances can be removed by chlorination and filtration?

- A bacteria, sand and sodium chloride
- B bacteria and sand only
- C bacteria and sodium chloride only
- D sand and sodium chloride only

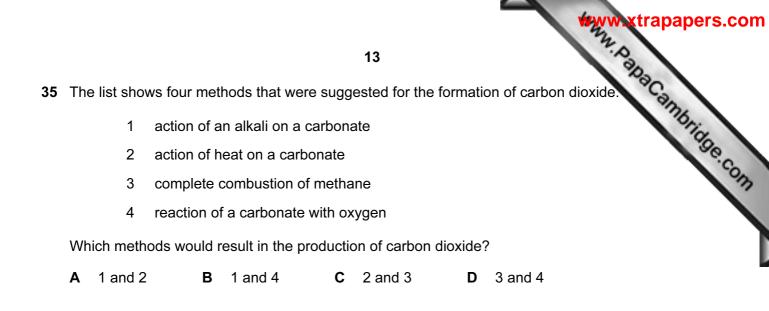
© UCLES 2013

32 Iron rusts when it reacts with1.....

ch as2. Rusting can be prevented by covering the iron with a more reactive metal, such as2.

Which words correctly complete gaps 1 and 2?

	1	2
Α	oxygen	copper
В	oxygen	magnesium
С	oxygen and water	copper
D	oxygen and water	magnesium


33 Nitrogen, phosphorus and potassium are essential elements for plant growth.

Which mixture provides all three essential elements?

	mixture	formula
Α	ammonium phosphate + potassium chloride	(NH₄)₃PO₄ + KC <i>l</i>
В	ammonium phosphate + ammonium nitrate	(NH ₄) ₃ PO ₄ + NH ₄ NO ₃
С	ammonium phosphate + ammonium chloride	(NH ₄) ₃ PO ₄ + NH ₄ C <i>l</i>
D	ammonium nitrate + potassium chloride	NH₄NO₃ + KC <i>l</i>

34 Which information about carbon dioxide and methane is correct?

		carbon dioxide	methane	
Α	formed when vegetation decomposes	\checkmark	x	key
в	greenhouse gas	1	1	✓ = true
С	present in unpolluted air	×	x	x = false
D	produced during respiration	x	\checkmark	

36 Organic compounds may have names ending in -ane, -ene, -ol or -oic acid.

How many of these endings indicate the compounds contain double bonds in their molecules?

A 1 B 2 C 3 D 4

37 The table shows the boiling points of four members of the homologous series of alcohols.

comp	ound	boiling point	
name	formula	/°C	
methanol	CH₃OH	65	
ethanol	C_2H_5OH	78	
propanol	C ₃ H ₇ OH	х	
butanol	C_4H_9OH	117	

What is the value of X?

A 55 °C **B** 82 °C **C** 98 °C **D** 115 °C

WANN, PapaCambridge.com 38 The table shows some fractions that are obtained from petroleum by fractional together with some of their uses.

fraction	use
refinery gas	cooking
gasoline	fuel for cars
1	making chemicals
2	jet fuel
3	fuel for ships
bitumen	making roads

Which row correctly identifies fractions 1, 2 and 3?

	1	2	3
Α	diesel oil	fuel oil	lubricating fraction
в	fuel oil	diesel oil	kerosene
С	kerosene	naphtha	diesel oil
D	naphtha	kerosene	fuel oil

39 Which columns describe the hydrocarbons ethane and ethene?

	1	2	3	4
state at room temperature	gas	gas	liquid	liquid
reaction with oxygen	burns	burns	burns	burns
reaction with aqueous bromine	no reaction	decolourises bromine	no reaction	decolourises bromine

- Α 1 (ethane) and 2 (ethene)
- **B** 1 (ethane) and 4 (ethene)
- С 2 (ethene) and 3 (ethane)
- 3 (ethane) and 4 (ethene) D
- 40 Which of the statements about ethanol are correct?
 - 1 Ethanol can be formed by an addition reaction.
 - 2 Ethanol can be formed by fermentation.
 - 3 When ethanol burns in air, it forms carbon dioxide and water.
 - 1, 2 and 3 В 1 and 2 **C** 1 and 3 **D** 2 and 3 Α

BLANK PAGE

15

				16	www.ktrapapers.
	0	4 Helium	20 Neon Argon	84 K K A Koption 131 Xeron Radon	www.xtrapapers.
		£ ⊥ ∾	9 9	86 54 36	
	II>		19 9 Fluorine 9 35.5 0 17 Chorine		173 X ^{11tretulum} 102 102
	>		16 Sulfur 16 Sulfur	79 Selentium 34 128 128 Tellutrium 52 84	Haulium Beam Add Mendelevium 101
	>		14 7 Nitrogen 7 31 81 7	75 Arsenic 33 Arsenic 51 Antimony 51 Bi Bi Bi	167 Erbium 68 Fermium 100
	≥		6 Carbon 6 Salticon 28 Silicon	73 Germanium 32 ermanium 32 ermanium 32 ermanium 50 Tin 50 Tin 50 Lead	165 Hohnium 67 Einsteinium 99 (r.t.p.).
	≡		11 B Boron 5 27 A1 A1	70 Ga 31 ^{Gallum} 31 ¹¹⁵ 115 116 149 204 71 71 81 ^{Thallum}	162 Dysprosium 66 Cf 98 Californium 98
				65 30 Zhr 112 112 20 48 Mercury 80 80 80 80 80 80 80 80 80 80 80 80 80	159 Tb 65 Berkelium 97 ture and
Group				64 Cu 29 Copper 29 Copper 108 197 197 79 Cod	140141144144150150157157159162165CePrNdPmSmEuGdTbDyHoDationResolvnimNoomimPernetitiunSmEuGdTbDyHoDation590001NpPunSmEuGdTbDyHoDation91NpPunSmEuropiun64CfBkCfEsHoDation92NpNpPunAmAmCmBkCfEsEsThe volume of one mole of any gas is 24 dm3 at room temperature and pressure (r.t.p.).
<u>e</u>				59 106 106 106 106 106 106 106 106	Be at room
Group				59 Cobat thodium fridum	150 Samarium 62 94 tuonium 99 94 tuonium 98 is 24 dm ³
	-	Hydrogen		56 56 Ren 101 27 101 101 27 14 44 45 130 05 05	Promethum 61 Promethum 88 Neptunum 93 Promethum 93 Promethum 94 Promethum 95 Promethum 95 Promethum 95 Promethum 96 Promet
	-			55 Min nganese threturn henturn henturn	144 Neodymium Fr 60 238 61 238 03 92 Uranum 93 92 93 93 93 94 04
				52 Maintain M	141 Praseodymium Net 59 Pratectinum 91 92 10 10 10 10 10 10 10 10 10 10
				Vanadum Vanadum 23 93 93 84 Nobum 181 181 181 73 Tantaum	89 - 66
				48 22 91 91 40 22 21 21 21 21 21 21 21 21 17 8 17 8 17	nic mass bol
				45 Scandum 21 89 89 139 139 139 139 57 *	<pre>227 227 addition 89 Actinium 89 alignment a = relative atomic mass X = atomic symbol b = proton (atomic) number</pre>
	=		9 Beryllium 4 Beryllium 24 Magnesium	40 20 ^{Calcium} 28 88 88 88 38 Strontium 38 ^{Banum} 56 ^{Banum}	Fr 226 Radium 227 Bg 227 Activition 87 Radium Activition 88 Radium 89 400-103 Actinoid series a = relative a Key x = a = relative a b b = proton (a
	_		11 Sodium	33 A A A A A A A A A A A A A A A A A A A	Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

