

CANDIDATE

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

NAME **CENTRE CANDIDATE NUMBER** NUMBER

CHEMISTRY 0620/51

Paper 5 Practical Test May/June 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

As listed in the Confidential Instructions Additional Materials:

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Practical notes are provided on page 8.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use					
Total					

This document consists of 7 printed pages and 1 blank page.

You are going to investigate what happens when two different solids, C and D, rea excess dilute hydrochloric acid.

Read all the instructions below carefully before starting the experiments.

Instructions

You are going to carry out five experiments.

(a) Experiment 1

Use a measuring cylinder to pour 30 cm³ of dilute hydrochloric acid into the polystyrene cup supported in the beaker provided. Measure the temperature of the dilute hydrochloric acid and record it in the table below. Add 1 g of solid C to the dilute hydrochloric acid and stir the mixture with the thermometer.

Measure the maximum temperature reached by the liquid mixture. Record your result in the table.

(b) Experiment 2

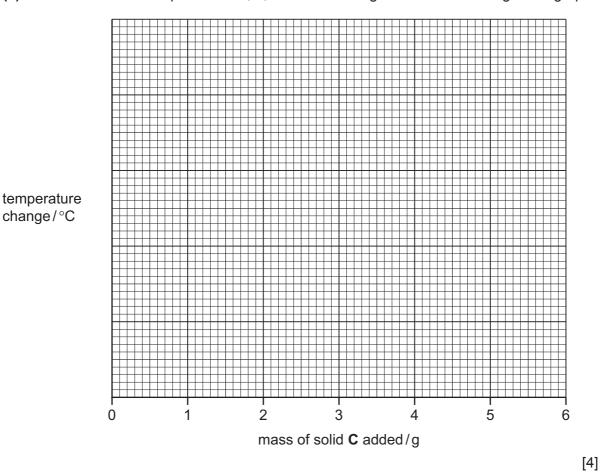
Empty the polystyrene cup and rinse it with water. Repeat Experiment 1 using 2g of solid C. Record your results in the table.

(c) Experiments 3 and 4

Repeat Experiment 2 using 3 g and then 5 g of solid C. Record your results in the table.

Complete the final column in the table.

Experiment	mass of solid C /g	initial temperature of acid/°C	maximum temperature reached/°C	temperature change/°C
1				
2				
3				
4				


[4]

(d) Experiment 5

Repeat Experiment 1 using all of the solid **D** provided. Measure the minimum temperature reached by the liquid mixture. Record your results in the spaces below.

Initial tem	nerature	of dilute	hydrochloric	acid =	0	\mathcal{C}
IIIIIIai leii	iperature	oi ullute	TIYUTUCITIOTIC	aciu –	'	\cup

(e) Plot the results for Experiments 1, 2, 3 and 4 on the grid and draw a straight line graph.

(f) (i) From your graph, deduce the temperature change of the solution when 6 g of solid C is added to 30 cm³ of dilute hydrochloric acid.

Show clearly on the grid how you worked out your answer.

00	יך	つ
	Į.	_

(ii) From your graph, deduce the mass of solid **C** that would give a temperature rise of 9 °C when added to 30 cm³ of dilute hydrochloric acid.

Show clearly **on the grid** how you worked out your answer.

 	 [2	21

© UCLES 2013 [Turn over

For miner's

(g)	What type of chemical process occurs when solid D reacts with dilute hydrochlon
(h)	Suggest the effect on the results if Experiment 3 was repeated using 60 cm³ of dilute hydrochloric acid.
	[2]
(i)	Predict the temperature of the solution in Experiment 4 after 1 hour. Explain your answer.
	[2]
(j)	When carrying out the experiments, what would be one advantage and one disadvantage of taking the temperature readings after exactly one minute?
	advantage
	disadvantage
	[2]
	[Total: 21]

© UCLES 2013

2 You are provided with two different liquids, **A** and **B**. **A** is an aqueous solution and **B** is a pure liquid. Carry out the following tests on **A** and **B**, recording all of your observations in the table. Conclusions must not be written in the table.

	tests	observations					
test	s on liquid A						
	de liquid A into four equal portions in arate test-tubes.						
(a)	Describe the colour and smell of liquid A .	[1]					
	Using a teat pipette, add a few drops of the liquid to Universal Indicator paper.						
	Describe the colour and state the pH.	[2]					
(b)	To the second portion of liquid A , add a piece of magnesium ribbon.						
	After two minutes, test the gas given off with a splint.						
	·	[3]					
(c)	To the third portion of liquid A , add a						
(0)	marble chip.	[2]					
(d)	To the fourth portion of liquid A , add a spatula measure of copper oxide.						
	Heat the solution gently and leave to settle.	[1]					

tests	observations							
tests on liquid B								
(e) (i) To about 1 cm³ of liquid B , add a few drops of dilute sulfuric acid followed by aqueous potassium dichromate(VI). Heat the mixture to boiling.	[2]							
(ii) Repeat (e)(i) using aqueous potassium manganate(VII) instead of potassium dichromate(VI).	[2]							
(f) Place a few drops of liquid B on a dry watch glass. Touch the surface of the liquid with a lighted splint.	[2]							
(g) Identify liquid A.								
(h) What conclusions can you draw about liquid B?								
	[Total: 19]							
potassium manganate(VII) instead of potassium dichromate(VI). (f) Place a few drops of liquid B on a dry watch glass. Touch the surface of the liquid with a lighted splint. (g) Identify liquid A .	[2] liquid B ?							

7

BLANK PAGE

NOTES FOR USE IN QUALITATIVE ANALYSIS

Test for anions

Test for anions	8 NOTES FOR USE IN QUALITATIVE	E ANALYSIS test result offenoscopes, earbon dioxide
anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻) [in solution]	acidify with dilute nitric acid, then aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (Al³+)	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium (NH ₄ ⁺)	ammonia produced on warming	_
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt., or very slight white ppt.
copper (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results			
ammonia (NH ₃)	turns damp red litmus paper blue			
carbon dioxide (CO ₂)	turns limewater milky			
chlorine (Cl ₂)	bleaches damp litmus paper			
hydrogen (H ₂)	'pops' with a lighted splint			
oxygen (O ₂)	relights a glowing splint			

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.