CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

BBCAMRRIDGE

www.xtrapapers.com

Page 2	Mark Scheme	Syllabus	.8
	IGCSE – October/November 2013	0620	123
			S

- 1 (a) uranium / plutonium / thorium
 - (b) graphite / carbon
 - (c) platinum / titanium / mercury / gold [1]
 NOT: carbon / graphite
 - (d) helium [1]
 - (e) nitrogen / phosphorus [1]
 - (f) argon [1] **ACCEPT:** any ion 2 + 8 + 8 e.g. K^+ etc.
 - (g) tellurium [1]
 ACCEPT: correct symbol [Total: 7]
- 2 (a) Any three of: iron is harder

iron has higher density

ACCEPT: heavier or potassium lighter

iron has higher mp or bp

iron has higher tensile strength or stronger

iron has magnetic properties

NOTE: has to be comparison, e.g. iron is hard (0) but iron is harder (1)

NOT: appearance e.g. shiny

ACCEPT: comparative statements relating to potassium

(b) potassium hydrogen (1) and potassium hydroxide (1)

zinc hydrogen (1) and zinc oxide (1)

copper no reaction (1) [5]

[Total: 8]

[3]

Page 3		Mark Scheme	Syllabus	9 V			
. ago o		IGCSE – October/November 2013	0620	No.			
(a) (i	,	tional distillation id) air	Ì	Cambrid			
(ii	of al	king / heat in presence of catalyst kane / petroleum ve an alkene and hydrogen		Dana Cambridge			
	nam	electrolysis (1) led electrolyte (1) ledgen at cathode (1)					
	reac heat	from methane (1) t water / steam (1) c catalyst (1) ACCEPT: water with methane or electrolysis					
(b) (i		oair with both graphs correct is C (E: mark (b)(ii) independent of (b)(i)		[1]			
(ii	this	pressure favours side with lower volume / fewer mois RHS / product / ammonia H ₃ / yield increases as pressure increases	bles	[1] [1] [1]			
	exot %Nl	forward reaction is exothermic hermic reactions favoured by low temperatures H ₃ / yield decreases as temperature increases CEPT: reverse arguments		[1] [1] [1]			
ACCEPT: redu		eases reaction rate CEPT: reduces activation energy decreases the amount of energy particles need to r	eact	[1] [1]			
	OR:	economic rate at lower temperature so higher yield		[Total: 14]			
(a) (i		ss at t =0) – (mass at t = 5) [E: must have mass at t = 5 not final mass		[1]			
(ii	slow	est at origin ving down between origin and flat section gradient = re gradrient = 0	0				
	thre	e of above in approximately the correct positions		[2]			
(iii	2 co	rrect comments about gradient = [2] rrect comments about gradient = [1] rrect comment about gradient = [0]		[2]			
(b) start at agining and annullan mundicut							
(b) start at origin and smaller gradient [1] same final mass just approximate rather than exact [1]							

3

4

www.xtrapapers.com

Page 4			Mark Scheme Syllabus		0	
				IGCSE – October/November 2013	0620	Day
	(c) ((i)		ller surface area r collision rate		PanaCambridge
	(i	ii)	mole collic	[1]		
	r r	con max mas	centra dimun ss of d	of moles of HCl in 40cm^3 of hydrochloric acid, ation 2.0mol / $dm^3 = 0.04 \times 2.0 = 0.08$ n number of moles of CO_2 formed = 0.04 one mole of $CO_2 = 44 \text{g}$ n mass of CO_2 lost = $0.04 \times 44 = 1.76 \text{g}$		[1] [1] [1] [1]
						[Total: 15]
5	(a) ((i)		e same molecular formula / both are C ₅ H ₁₂ have different structural formulae / different structur	es	[1] [1]
	(i	ii)	CH ₃ -	-CH ₂ -CH=CH-CH ₃ / any other correct isomer		[1]
	(b) ((i)		-(Br)-CH ₂ Br -: C ₂ H ₄ Br ₂		[1]
				omoethane E: numbers not required but if given must be 1, 2		[1]
	(i	ii)		-CH ₂ -CH ₃		[1]
			prop	: C₃H ₈ ane		[1]
	(ii	ii)	CH ₃ -	-CH ₂ -CH ₂ -CH ₂ -OH / CH ₃ -CH ₂ -CH(OH)-CH ₃ nol		[1] [1]
			numl	bers not required but if given must be correct and m	atch formula	
	(c) ((i)		-CH=CH-CH ₂ -CH ₃ -CH=CH-CH ₃		[1] [1]
	(i	ii)	colo	/ purple urless : clear		[1] [1]
				(01) 01 01 (01)		
	correct		ect re	(CN)-CH ₂ -CH(CN)- epeat unit CH ₂ -CH(CN)		[1]
	continuati			at least 2 units in diagram tion		[1] [1]
						[Total:16]

www.xtrapapers.com

	Page 5		Mark Scheme Syllabus			Q Vr
	i age		IGCS	E – October/November 2013	0620	OD3
6	(a) (i)	and oppo	active force be (negative) ele osite charges	etween) positive ions		O ADA CAMBRIDGO
	(ii)	NOT	Γ: atoms / prof	ers of lead ions / cations / positive id ions / nuclei th other / the bonds are non-directio		[1] [1]
	(b) (i)		ydrous cobalt CEPT: hydrous	chloride becomes hydrated s		[1]
	(ii)	,	on dioxide is a um hydroxide	acidic and calcium oxide are bases / alka	lis	[1] [1]
	(iii)	wate	two of: er, calcium car CEPT: sodium	bonate and sodium carbonate bicarbonate		[2]
				O ₂ formed = 2.112 / 44 = 0.048 O formed = 0.432 / 18 = 0.024		[1] [1]
	X :	x = 2 and $y = 1$ NOT : ecf from this line				
	fo	formula is 2PbCO ₃ .Pb(OH) ₂ / Pb(OH) ₂ . 2PbCO ₃				[1]
						[Total:12]
7	(a) (i)		rogen (atoms) Γ: substitute	replaced by (atoms) of a different e	element e.g. chlorine	[1]
	(ii)) light	required			[1]
	er	exothermic reaction gives out energy endothermic reaction absorbs takes in energy				[1] [1]
	C- Ci to	onds br -H <i>l</i> -C <i>l</i> tal ene	rgy	energy +412 +242 +654 energy		[1]

-338

-431

-769

energy change -115 negative sign indicates exothermic

C-C1

H-Cl

total energy

[Total: 8]

[1] [1] [1]